
Mod python Servlets

API Documentation

March 15, 2005

Contents

Contents 1

1 Module servlet 2

1.1 Functions . 2

1.2 Class HTMLPage . 3

1.2.1 Methods . 3

1.2.2 Class Methods . 5

1.2.3 Instance Variables . 5

1.3 Class Servlet . 7

1.3.1 Methods . 7

1.3.2 Class Methods . 10

1.3.3 Instance Variables . 10

Index 14

1

Module servlet

1 Module servlet

Copyright 2004 Daniel J. Popowich

Licensed under the Apache License, Version 2.0 (the ”License”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the License.

See handler for details about the servlet handler.

$Id: servlet.py,v 1.12 2005/02/12 04:10:00 popowich Exp $

1.1 Functions

handler(req)

This handler uses instances of subclasses of Servlet to handle HTTP GET and POST requests. These
instances are referred to as servlets in this documentation.
Overview of how it works:
1. A developer creates a class that subclasses Servlet or, more probably, HTMLPage, which already
subclasses Servlet and has many features for generating HTML.

2. Let’s say we have a class named Foo that subclasses HTMLPage. This class must be saved in a file
called Foo.mps. (mps stands for Mod Python Servlet).

Generally, for any servlet named SERVLET, it must be a subclass of Servlet and saved in a file
named SERVLET.mps.

3. Apache needs to be configured to call this handler for Foo.mps. Assuming /var/www/html is your
DocumentRoot and also assuming Foo.mps is saved in directory /var/www/html/mps test then
Apache needs the following configuration:

<Directory /var/www/html/mps test>

SetHandler mod python

PythonHandler mod python.servlet

PythonDebug on

</Directory>

4. When the server receives a request for /mps test/Foo it will look for a file named Foo.mps in
/var/www/html/mps test, compile the file, look for a class named Foo, insure it is a subclass of
Servlet, create an instance of this class, let’s call it servlet, and then call, in order:

(a) servlet.auth()

(b) servlet.prep()

(c) servlet.respond()

(d) servlet.wrapup()

See the documentation for the above methods of Servlet for details about each stage of processing
the request.

5. Instances of a class are cached, so if a request for /mps test/Foo comes in another request, the
instance will be found in the cache and reused.

See the documentation for Servlet and HTMLPage for further details about servlet processing and helpful
features.
If installed, see the tutorial for a live demonstration of servlets. See the README file that came with
this distribution for tutorial installation instructions.

2

Module servlet Class HTMLPage

1.2 Class HTMLPage

servlet.Servlet

HTMLPage

HTMLPage is the servlet that most developers wanting to generate HTML will want to subclass. The respond
method of HTMLPage calls write html which writes to the client a well-defined HTML document.

Many methods and instance variables offer features to the developer to allow the customization of their
content. Use of subclassing can produce site-wide continuity of content; e.g., you can create a servlet called
SitePage (that inherits from HTMLPage) that will provide your site-wide look and feel, then individual
servlets can inherit from SitePage.

To see how HTMLPage writes out an HTML document, look at write html and the methods it calls.

1.2.1 Methods

respond(self)

This first calls Servlet.repsond (to see if a method should be called; see ok methods to call) and if it
returns False, calls write html.

Overrides: servlet.Servlet.respond

write base(self)

Write BASE tag to the client in the HEAD.

See Also: base

write body(self)

Writes the BODY section to the client.
This method writes ”<BODY...>” to the client taking into account the body attrs instance variable. It
then calls write body parts and finally writes the ”</BODY>” tag.
This method will not be typically overridden. To modify the content of the BODY section, see
write body parts.

write body parts(self)

Write the content of the BODY section.
The base implementation simply calls write content.
For complex pages that have many sections, this method will typically be overridden, e.g., write to the
client the layout of the site look and feel and where page-specific content should appear, call
write content.
See the tutorial that comes with the distribution for examples of how this method can be used to create
site-wide content.

write content(self)

This method must be overridden to produce content on the page.

3

Module servlet Class HTMLPage

write css(self)

Writes CSS to the client in the HEAD.

See Also: css links, css

write doctype(self)

Writes to the client the <!DOCTYPE...> tag. By default, the following is used:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

This can be controlled by setting the doctype instance variable. If set, it will be written, as-is, to the
client. If it is not set, then the dtd instance variable will be checked; it can be one of ”strict”, ”loose” or
”frameset”. The default is ”loose” and the resulting DOCTYPE is shown above. If set to ”strict” or
”frameset” an appropriate DOCTYPE will be generated.
This method will not be typically overridden.

write head(self)

This writes the HEAD section of the HTML document to the client.
It first writes ”<HEAD”> then calls write head parts and, lastly, writes ”</HEAD>”.
This method will not be typically overridden. To modify the content of the HEAD section, see
write head parts.

write head parts(self)

This method calls, in order:
1. write title

2. write shortcut icon

3. write base

4. write meta

5. write css

6. write js

See the above methods for details about what each writes to the client. All of the above methods can
have the content they write to the client controlled by setting (or unsetting) instance variables.
While the base method will serve most developer needs, this method is a likely candidate to be
overridden. If you want to add to the HEAD you will likely want to call the superclass method and then
write additional content in your method, e.g.:

class MyServlet(HTMLPage):

...

def write head parts(self):

HTMLPage.write head parts(self)

add my own content

self.writeln(...)

4

Module servlet Class HTMLPage

write html(self)

This method produces a well-formed HTML document and writes it to the client.
It first calls write doctype which writes the DOCTYPE. It then writes ”<HTML>”. In turn it calls
write head and write body which write the HEAD and BODY sections, respectively. It finishes by
writing ”</HTML>”.

Return Value

True

write js(self)

Writes javascript to the client in the HEAD.

See Also: js src, js

write meta(self)

Writes META tags to the client in the HEAD.

See Also: meta, http equiv

write shortcut icon(self)

Writes a LINK tag to the client specifying the shortcut icon.

See Also: shortcut icon

write title(self)

Writes the TITLE tag to the client.
It checks for the title instance variable. If it does not exist it uses the name of the servlet for the title.
If title is callable it will be called (with no arguments) and its output will be used as the title.

See Also: title

Inherited from Servlet: init , str , add cookie, auth, external redirect, flush, get cookies, inter-
nal redirect, log, prep, raw write, wrapup, write, writeln

1.2.2 Class Methods

Inherited from Servlet: count, sourcefilename

1.2.3 Instance Variables

Name Description

base Value: ’’

If set, this will specify the BASE tag in the HEAD. If base is a
string it will be the value of the href attribute. If base is a tuple,
it should have two string elements of the form (href, target) which
will be the values of those BASE tag attributes.

body attrs Value: {}
Attributes for BODY tag. Default is empty dict. If non empty,
the keys will become attribute names for the BODY tag and the
values will be the attribute values.

continued on next page

5

Module servlet Class HTMLPage

Name Description

content type Value: ’text/html’

Specifies the content type of the servlet, i.e., ”text/html”. If it is
not set (None) then it defaults to ”text/plain”. Default: None

css Value: ’’

A string or list of strings of CSS. If non empty, a <STYLE
type=”text/css”>...</STYLE> section will be placed in the
HEAD. If css is a list of strings, the elements will be joined
(seperated by newlines) and placed in a single <STYLE
...>...</STYLE> section.

css links Value: []

A list of hrefs (strings). For each href, a <LINK type=”text/css”
rel=”stylesheet” ...> will be placed in the HEAD.

doctype See write doctype

dtd See write doctype

http equiv Value: {}
http equiv, like meta, produces META tags in the HEAD, but
instead of the keys being the value of the name attribute, they are
the value of the http-equiv attribute. See meta for details.

js Value: ’’

A string or list of strings of javascript. If non empty, a <SCRIPT
type=”text/javascript”>...</SCRIPT> section will be placed in
the HEAD. If js is a list of strings, the elements will be joined
(seperated by newlines) and placed in a single <SCRIPT
...>...</SCRIPT> section.

js src Value: []

A list of hrefs (strings). For each href, a <SCRIPT
type=”text/javascript” src=”HREF”></SCRIPT> will be
placed in the HEAD.

meta Value: {}
A dict, which if non-empty will produce META tags in the
HEAD. The keys of the dict will be the values of the name
attribute and their values will become the content attribute. For
example, the following value of meta:
meta = {"Author" : "Daniel Popowich",

"Date" : "April 28, 2004"}
will produce the following output in the HEAD:

<META name="Author" content="Daniel Popowich">

<META name="Date" content="April 28, 2004">

The values of the dict may be a list or tuple of strings, in which
case multiple META tags will be produced for the same name
attribute. For example:
meta = {"Author" : ["Tom", "Jerry"]}

will produce the following output in the HEAD:
<META name="Author" content="Tom">

<META name="Author" content="Jerry">

shortcut icon Value: ’’

If non empty, specifies the href to a shortcut icon and produces a
LINK tag in the HEAD:
<LINK rel=”shortcut icon” href=”shortcut icon”>

continued on next page

6

Module servlet Class Servlet

Name Description

title The title of the HTML page. If not set, it defaults to the name of
the servlet. title can be a callable that accepts no arguments, in
which case the title will be the output of the callable.

Inherited from Servlet: auth realm (p. 7), form (p. 7), form vars (p. 7), instantiated (p. 7),
ok methods to call (p. 7), path info (p. 7), query vars (p. 7), req (p. 7), reusable (p. 7), session (p. 7),
session timeout (p. 7), use session (p. 7)

1.3 Class Servlet

Known Subclasses: HTMLPage

Abstract base class for all mod python servlets.

You must subclass this class implementing, minimally, respond, but you will probably want to subclass
HTMLPage, which already subclasses Servlet and has many added features for generating HTML output.

1.3.1 Methods

init (self)

Base constructor for all servlets.
If subclasses override this method they must call this method for proper servlet initialization. For
example:
class MyServlet(Servlet):

def init (self):

Servlet. init (self)

...

str (self)

Return a simple string representing an instance:
”Servlet class name”

add cookie(self, cookie, value=’’, **kw)

Wrapper around mod python.Cookie.add cookie(). See mod python documentation for details.

auth(self)

Basic HTTP authentication method.
This method is the first user method called by the handler for each request, just before prep. It should
return without exception if authorization is granted (the return value is ignored) or raise
apache.SERVER RETURN with apache.HTTP UNAUTHORIZED as a value if authorization is denied. Typical
implementation should use the get user pw and unauthorized helper methods:

def auth(self):

user, pw = self. get user pw()

test user, pw for authorization; if OK, return

self. unauthorized()

See the source code for auth with mapping for a simple implementation.
The base method is a no-op, i.e., no authentication is required.

7

Module servlet Class Servlet

external redirect(self, uri, permanently=True)

Send a redirect to the client via a Location HTTP header.

Parameters

uri: The URI to relocate to.
(type=str)

permanently: If True (the default) reply with 301 (MOVED PERMANENTLY, else 302
(MOVED TEMPORARILY).
(type=bool)

Return Value

Does not return.

flush(self)

Utilily method which immediately flushes all buffered output to the client.
If content type has not already been written it will be.

Return Value

None

get cookies(self, klass=<class ’mod python.Cookie.Cookie’>, **kw)

Wrapper around mod python.Cookie.get cookies(). See mod python documentaion for details.

internal redirect(self, uri)

Redirect internally. This does not send a redirect to the client (see external redirect), but redirects
internally to the server. This is a wrapper around req.internal redirect(); see mod python documentation
for details.

Parameters

uri: The URI to relocate to.
(type=str)

Return Value

Does not return.

log(self, msg)

Utility method to write a message to the apache error log.

Parameters

msg: The message to be written to the log.
(type=str or an object that can be converted into a str.)

Return Value

None

8

Module servlet Class Servlet

prep(self)

This is the second user method called by the handler, after auth, prior to respond.
It should be used as a means to prep the servlet for respond, e.g., opening data files, acquiring db
connections, preprocessing form data, etc.
The return value is ignored by the handler.
If this method is implemented in a subclass, the superclass method must be called; e.g:

class MyServlet(HTMLPage):

...

def prep(self):

HTMLPage.prep(self)

...

...

raw write(self, *args)

Like write, but all output is immediately flushed to the client and no string coercion is attempted on the
arguments.

Parameters

args: tuple of arbitrary objects

Return Value

None

respond(self)

This is the third user method called by the handler, after prep, before wrapup and is where the response
is generated. Typically, this will be by calls to write, writeln and/or raw write. For example:

def respond(self):

self.writeln("Hello, world!")

For most developers, this method will not need to be written because the version implemented in
HTMLPage is sufficient.
The base class implementation (which is called by HTMLPage.respond) allows for arbitrary methods to be
called during form POSTs. See ok methods to call.
This method must return True or False. If True, request processing will continue (and ultimately, content
sent to the client), if False, a 204 response will be sent to the client (NO CONTENT) and processing will
stop.

Return Value

bool

wrapup(self)

This is the fourth user method called by the handler, immediately after calling respond, before
finally.
This method should be used to ”tidy up” after a request, e.g., flush output data, create a log entry, etc.
The base method flushes output to the client. If overridden, this method should be called by the subclass
if it does not call flush.
The return value is ignored by the handler.

9

Module servlet Class Servlet

write(self, *args)

Utility method to write the arguments to the client.
Each arg is coerced to a string and buffered for output. The output is sent to the client when flush is
called explicitly or implicitly, when the handler is finished with the request.

Parameters

args: tuple of arbitrary objects

Return Value

None

writeln(self, *args)

Like write, but in addition appends a newline to the output.

Parameters

args: tuple of arbitrary objects

Return Value

None

1.3.2 Class Methods

count(klass)

Get the count of requests for this servlet.

Return Value

int

sourcefilename(klass)

Get the filename of the source file for this servlet.

Return Value

str

1.3.3 Instance Variables

Name Description

auth realm Value: ’Unspecified’

Specifies the realm for basic HTTP authentication. Default:
”Unspecified”.

content type Value: None

Specifies the content type of the servlet, i.e., ”text/html”. If it is
not set (None) then it defaults to ”text/plain”. Default: None

form User data sent with request via form or url. For each request an
instance of FieldStorage is created. Note: FieldStorage is created
with blank values being ignored, ie, as if they did not exist.

form vars Value: []

This is the same as query vars except these variables are only
processed for POST requests. For all GET requests, these
variables will be set to their default values.

continued on next page

10

Module servlet Class Servlet

Name Description

instantiated Timestamp of when the servlet was instantiated. This is stored as
seconds since the epoch; see the python documentation for
time.time().

ok methods to call Value: []

list of methods that can be called directly via a POST. If the
name of a form element looks like:

call NAME()

and NAME is the name of an unbound method of the servlet and
the method is listed in ok methods to call, then that method will
be called when the form is posted. The form element can also look
like this:

call SOME METHOD(1,2,3)

and SOME METHOD will be called with three arguments: 1, 2, 3.
See the tutorial that comes with the distribution for examples.

path info req.path info canonicalized as a list: stripping beginning and
trailing ”/” and splitting it on internal ”/”.

continued on next page

11

Module servlet Class Servlet

Name Description

query vars Value: []

List of arguments to be searched for in form to be set as instance
variables of the servlet. This processing occurs during the call to
prep.
query vars can be either a list of strings (the variable names) or a
list of tuples of the form:
(NAME, DEFAULT [,CONVERSION])

where NAME, a string, is the name of the variable and must be a
legal python identifier; DEFAULT, must be a string, list or dict, is
the default value for NAME if it does not appear in form, and,
optionally, CONVERSION is a callable that can convert the
string found in form (or DEFAULT) to an appropriate value
and/or type.
When an element of query var is just a string (not a tuple), this is
equivalent to:
(NAME, ’’)

That is, the default value for NAME, if not found in form, is an
empty string.
If DEFAULT is a string, the value will be retrieved from form

with a call to form.getfirst(). If DEFAULT is a list, the value will
be retrieved by a call to form.getlist(). If DEFAULT is a dict,
form will be searched for names with the pattern NAME[KEY]
with calls to either getfirst() or getlist() depending on whether the
default dict value is a list or string for that key.
All string values retrieved from form will be stripped of
whitespace.
Example of query vars:

["name",

("login", "", bool),

("items", []),

("map", {"foo" : "bar",

"baz" : []})]
query vars should be contrasted to form vars. Where form vars

are only processed for POST requests, query vars is processed for
both POST and GET requests.
If installed, see the tutorial for a live demonstration of
query vars.

req The apache request object.
reusable Value: True

Flag (default: True) indicating whether or not an instance of this
servlet can be used for multiple requests. If False, instances will
be recreated for every request of a servlet.

session Value: None

A Session (see the mod python documentation for
mod python.Session.Session). A session object is created for each
request if use session is True. If use session is False, this
variable will be set to None.

session timeout Value: 1800

Length of time, in seconds, until session times out. Default: 30
minutes.

use session Value: False

If true, create (or reload) session for each request. Default: False.
continued on next page

12

Module servlet Class Servlet

Name Description

13

Index

servlet (module), 2–13
handler (function), 2
HTMLPage (class), 2–7
respond (method), 3
write base (method), 3
write body (method), 3
write body parts (method), 3
write content (method), 3
write css (method), 3
write doctype (method), 4
write head (method), 4
write head parts (method), 4
write html (method), 4
write js (method), 5
write meta (method), 5
write shortcut icon (method), 5
write title (method), 5

Servlet (class), 7–13
init (method), 7
str (method), 7
add cookie (method), 7
auth (method), 7
count (method), 10
external redirect (method), 7
flush (method), 8
get cookies (method), 8
internal redirect (method), 8
log (method), 8
prep (method), 8
raw write (method), 9
respond (method), 9
sourcefilename (method), 10
wrapup (method), 9
write (method), 9
writeln (method), 10

14

	Contents
	Module servlet
	Functions
	Class HTMLPage
	Methods
	Class Methods
	Instance Variables

	Class Servlet
	Methods
	Class Methods
	Instance Variables

	Index

