Controlling
L EGO® Programmable Bricks

Technical Reference

e

@0 Technic =veedsver

(EGO) .
Spirit.OCX . Technical Reference

Foreword

At LEGO, we believe that imagination isimportant to the world. For decades, the LEGO
construction materials have been a means for people of all ages to express creativity and make
discoveries of their own. The addition of LEGO programmable bricks brings a whole new
dimension to construction.

The LEGO programmabl e bricks are microcomputers, which makes it possible to add functions
or behaviour to physical creations made by LEGO pieces. The functions or behaviour are
controlled by means of programming.

LEGO has launched two types of programmable bricks: the RCX(tm) of LEGO®
MINDSTORM S(tm) Robotics Invention System(tm) and CyberMaster(tm) of LEGO Technic®
CyberMaster(tm). The programming software codes of these two products have deliberately
been designed to be easy to use -yet versatile and powerful in function. This has been important
to enable kids to use the new technology for creation of their own personally meaningful
inventions.

This technical reference guide is published to allow more creative freedom in the programming
for more experienced users. The technical reference guide documents how the programmable
bricks can be programmed by means of Visua Basic. We hope that the release of this document
will inspire even more people to develop imaginative applications of the programmable bricks.

We kindly ask you to read the License Agreement and Warranty Disclaimer below before using
this document.

We wish you good luck with development of creative applications.

LEGO - just imagine...

November 1998

Spirit.OCX Technical Reference

SOFTWARE DEVELOPER KIT LICENSE AGREEMENT
AND WARRANTY DISCLAIMER

Li cense for the Software included in the LEGO M NDSTORMS Sof t ware Devel oper Kit
(hereinafter referred to as the Software) fromthe LEGO G oup.

| MPORTANT -- READ CAREFULLY: By using the information contained in this document you
agree to be and are hereby bound by the ternms of this License Agreenent. |If you do not
agree to the terns of this Agreenment, do not use the information contained in this
docunent .

I. GRANT OF LI CENSE

The LEGO Group and its suppliers and licensors (hereinafter referred to as LEGD hereby
grant you a non-exclusive, non-conmmercial |icense to use the Software subject to the
follow ng terns:

You nay: (i) use the Software only to devel op applications for the LEGO
M NDSTORMS RCX and the LEGO TECHNI C CYBERVASTER
(ii) the applications devel oped by neans of the Software or parts
hereof shall only be used for purposes that neither directly nor
indirectly have any comercial inplications;

You may not:

(i) pernmit other individuals to use the Software except under the
terns |isted above;
(ii) nodi fy, translate, reverse engineer, deconpile, disassenble

(except to the extent that this restriction is expressly
prohibited by law) or create derivative wrks based upon the

Sof t war e;

(iii) resell, rent, lease, transfer, or otherwise transfer rights to
the Software; or

(v) remove any proprietary notices or |abels on the Software.

I'l. ENHANCEMENTS OR UP- DATES:
This |icense does not grant you any right to any enhancenent or up-date.
1. TITLE:

Title, ownership, rights, and intellectual property rights in and to the Software shal
remain with the LEGO G oup. The Software is protected by national copyright |aws and
international copyright treaties. The conmmunication protocol is protected by a pending
patent application.

Title, ownership rights and intellectual property rights in and to the content accessed
t hrough the Software including any content contained in the Software nedi a denonstration
files is the property of the applicable content owner and nmay be protected by applicable
copyright or other law. This |icense gives you no rights to such content.

LEGO the LEGO | ogo, the LEGO Brick and LEGO M NDSTORMS are some of the trademarks
bel ongi ng exclusively to the LEGO G oup.

If you want to |l earn nore about how to use trademarks and other proprietary rights
bel onging to the LEGO Group please visit our web site: http://ww.| ego.com

“Visual Basic” is the trademark of M crosoft Corporation. “Del phi” and “C++ Builder” are

the tradenarks of Borland Corporation. Al other trademarks are the property of their
respective owners.

Page 1 of 110 November 1998

Spirit.OCX Technical Reference

I'V. DI SCLAI MER OF WARRANTY:
THE SOFTWARE | S PROVI DED FOR FREE W THOUT ANY KI ND OF NMAI NTAI NANCE OR SUPPCRT.

THE SOFTWARE | S PROVI DED AS | S W THOUT WARRANTY OF ANY KIND. TO THE MAXI MUM EXTENT

PERM TTED BY APPLI CABLE LAW THE LEGO GROUP FURTHER DI SCLAI M5 ALL WARRANTI ES, | NCLUDI NG
W THOUT LI M TATI ON ANY | MPLI ED WARRANTI ES OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR
PURPCOSE, AND NONI NFRI NGEMENT. THE ENTI RE RI SK ARI SING QUT OF THE USE OR PERFORVANCE OF
THE SOFTWARE OR APPLI CATI ONS DEVELOPED BY MEANS OF THE SOFTWARE REMAINS WTH YOU. TO THE
MAXI MUM EXTENT PERM TTED BY APPLI CABLE LAW | N NO EVENT SHALL THE LEGO GROUP OR I TS
SUPPLI ERS BE LI ABLE FOR ANY CONSEQUENTI AL, | NCI DENTAL, DI RECT, | NDI RECT, SPECI AL,

PUNI TI VE, OR OTHER DAMAGES WHATSOEVER (| NCLUDI NG, W THOUT LI M TATI ON, DANMAGES FOR LCSS OF
BUSI NESS PRCFI TS, BUSI NESS | NTERRUPTI ON, LOSS COF BUSI NESS | NFORVATI QN, OR OTHER PECUNI ARY
LOSS) ARISING QUT OF THI'S AGREEMENT OR THE USE OF OR INABILITY TO USE THE PRODUCT, EVEN

I F THE LEGO GROUP HAS BEEN ADVI SED OF THE PGCSSI Bl LI TY OF SUCH DAVAGES. BECAUSE SOVE
STATES/ JURI SDI CTI ONS DO NOT ALLOW THE EXCLUSI ON OR LI M TATI ON OF LI ABILITY FOR
CONSEQUENTI AL OR | NCl DENTAL DAMAGES, THE ABOVE LI M TATI ON MAY NOT APPLY TO YOU.

V. TERM NATI ON:

This license shall terminate automatically if you fail to conply with the limtations
described in this Agreenent. No notice shall be required fromthe LEGO Goup to

ef fectuate such termination. On termnation you nmust destroy all copies of the Software
and applications devel oped by means of the Software.

VI . GOVERNI NG LAW

Thi s Li cense Agreenent shall be governed by the |laws of the jurisdiction, where you have
permanent residency. However, if the product is bought in USA the License Agreenent shall
be governed by the laws of the State of Connecticut, without regard to conflicts of |aw
provisions, and if the product in bought in USA you consent to the exclusive jurisdiction
of the state and federal courts sitting in the State of Connecticut. This License
Agreenment will not be governed by the United Nations Convention of Contracts for the
International Sale of Goods, the application of which is hereby expressly excluded.

VI|. ENTI RE AGREEMENT:

Thi s Agreenment constitutes the conplete and excl usi ve agreenment between the LEGO G oup
and you with respect to the subject matter hereof and supersedes all prior oral or
written understandings, communications or agreements not specifically incorporated
herein. This Agreenment nmay not be nodified except in witing duly signed by an

aut hori sed representative of the LEGO G oup and you.

November 1998 Page 2 of 110

Spirit.OCX Technical Reference

Introduction

This Technical Reference document tells you how to use SPIRIT.OCX directly to write LEGO MINDSTORMS RCX
or LEGO Technic CyberMaster programs, providing more detailed control over the LEGO Programmable Bricks
(abbreviated PBrick).

All examplesin this document are written as Microsoft Visual Basic programs (version 5.0 — abbreviated VB) but other
environments such as Borland Delphi/C++ Builder have been used successfully.

For program specific issues, the reader is referred to the respective manuals or online help systems. This document is
not intended as a general introduction to programming in VB or other systems. The reader is assumed to be familiar
with the different programming environments.

Pre-requisites

The SPIRIT.OCX ActiveX control must have been installed on the PC previously. This happens automatically when
installing the LEGO MindStorms Robotics Invention System CD-ROM (1.0 or later — abbreviated RIS) or the LEGO
Technic CyberMaster CD-ROM, so no further details will be given here.

Installing SPIRIT.OCX in VB

In the Components tab, tick “LEGO PBrickControl, OLE Control module” and drag an instance onto your main form. It
appears as aLEGO logo and it looks really nice if you make it rectangular (495 x 495 VB units works quite well and is
not too big). If it does not appear there, use the Add components feature and use the browser to find it.

Property settings
By selecting the object, you can set a number of useful properties for SPIRIT.OCX —in particular you can giveit the
name “PBrickCtrl”, which is useful if you want to use the examples in this document verbatim.

We have tried to make all names used in the examples be like the ones automatically generated by VB.

Name property
Allows you to change the name by which to refer to the contral in the programs. We have used the name ‘ PBrickCtrl’
throughout this document, but you may use any other name that you like, such as‘PB’ if you don't like typing.

PBrick property
Allows you to specify what kind of LEGO programmable brick you' re writing programs for. This property is used when
checking the arguments of the methodsin SPIRIT.OCX.

Y ou can choose between “0 — Spirit” (for CyberMaster) and “1 — RCX”.

LinkType property

Allows you to specify the transmission type used to be either “0 — InfraRed”, “1 — Cable”’ or “2 — Radio”. This property
tells SPIRIT.OCX how to format the data sent to the LEGO programmable brick and how to check the transceiver
tower connected to the serial port of the PC.

Currently RCX uses “0 — InfraRed” and CyberMaster uses “2 — Radio” exclusively, so make sure you change both
properties (PBrick and LinkType), when you change one of them. Obviously you must make sure that the hardware
matches your settings.

ComPortNo property
Allows you to set the serial communications port that the PC uses to talk to the transceiver tower. The valid rangeis
heavily PC hardware dependent, but usualy include COM1 to COMA4.

Be very careful, when changing this and look out for conflicts with modems, serial mouse devices, PDA hot-sync bays

and other serial devices. You can use the LEGO MindStorms RIS Troubleshooting utility if this causes you any
problems.

Page 3 of 110 November 1998

Spirit.OCX Technical Reference

Program structure
A program consists of a number of tasks and subroutines executing in parallel (in a multitasking environment) and
exchanging information via a set of common variables.

The downloaded programs are executed by an interpreter that carries out the instructions from the tasks that have been
started and are ready to execute (not waiting).

The tasks are visited in around robin fashion, so individua (byte code) instructions (commands) are executed
atomically but the interleaving of tasks happens on a command-by-command basis.

The number of programs, tasks and subroutines vary between the RCX and CyberMaster. For further information see
the parameter table on pg. TOBELINKED for details.

Tasks
The main structuring mechanism in RCX/CyberMaster programs are tasks which execute concurrently.

Starting a program by pressing the Run button on the RCX (Right button on CyberMaster) starts Task 0, which must
then start al other tasks as required, possibly after setting up and initialising the system (setting input sensor types and
modes, and setting outputs/motors to a known state).

Subroutines
To save program space, one can delegate common code to subroutines that can be called from the tasks.

Subroutines have no parameter and are shared between tasks. Several tasks can safely call the same subroutine at the
sametime.

Variables
Variablesin the RCX are more like general registersin a (RISC) microprocessor, in that they are addressed individually
and they cannot be combined to form contiguous chunks of memory.

There are 32 variables (numbered 0-31) and they are shared between all tasks and subroutines. It is possible to
implement a semaphore mechanism (using one global variable and exploiting the instruction set) to provide exclusive
access to shared resources.

Example
The following example shows a small application that sets up the communication and presents a few buttons for
querying the PBrick, setting a few properties and finally downloading a small program.The main form for the

application looks like:
. Form1 =]

Alive? hiue

Werzion | 03.01/03.09

INumI:-er o
Dawrload Firrmware 3.09 |
I i 26
UrlockFirmware | Size

ITime 575
IR shart |

I Success
IR long | Status

Download Program

November 1998 Page 4 of 110

Spirit.0CX

Technical Reference

and the project includes afew header files (listed as appendices).

Project - Project]

el=ji=]

=58 Project1 (GETSTA~1.VBF)
=5 Forms
O 1 | (gekskart
-5 Modules

----- #4% GetStarted (getstarked, bas)

-.48% RCXData (RCxdata.bas)

The program code for the form follows below:

Forml1(code):

Private Sub AliveCheck_Cick()
If PBrickCrl.PBAliveO Not Then

alive. Caption = "true"
El se
alive. Caption = "fal se"
End | f
End Sub

Private Sub DownPrgm C i ck()
PBrickCtrl . Sel ect Prgm Mot or Cont rol Prog
PBrickCtrl . Begi nOf Task Mt or OnOf f Task
PBrickCirl.Wait CON, 50
PBrickCtrl. Set Power "notorOnptor2", CON, kFull Speed
PBrickCtrl. Set Fwd " not or Onot or 2"
PBrickCtrl.On "notor Onot or 2"
PBrickCrl.Wait CON, 200
PBrickCtrl.Set Rnd "not or Onot or 2"
PBrickCrl.Wait CON, 200
PBrickCtrl. O f "notorOnotor2"
PBrickCtrl. Pl aySyst enSound SWEEP_FAST_SOUND
PBrickCtrl.EndO Task
End Sub

Private Sub ShortI R O ick()
PBrickCtrl.PBTxPower 0O
End Sub

Private Sub Version_dick()
FWrer . Caption = PBrickCtrl. Unl ockPBrick
End Sub

Private Sub Longl R dick()
PBrickCtrl . PBTxPower 1
End Sub

Private Sub Unl ockFirmvare_d i ck()

PBrickCtrl.Unl ockFirmvare "Do you byte, when | knock?"

End Sub

Private Sub Downl oadFi rmnvare_Cl i ck()
PBri ckCtrl.Downl oadFi rmmare "firnD309. 1 go"
End Sub

Private Sub Form Load()

PBrickCtrl.|nitComm
End Sub

Page 5 of 110

Simple motor on wait off test program
Wait 0.5 sec.

Drive forward for 2 sec.

Wait 2 sec.

Change direction and drive 2 sec.

Wait 2 sec.

Play buildin sound

Initialise communication on start-up just in case. One
could also use an extra command button for this.

November 1998

Spirit.OCX Technical Reference

Private Sub PBrickCtrl_Downl oadDone(ByVal ErrorCode As |nteger, ByVal Downl oadNo As | nteger)
If ErrorCode = 0 Then
D stat.Caption = "Success"
PBrickCtrl. Pl aySyst enSound SWEEP_DOAN_SOUND
El se
D stat.Caption = "error: " + Chr(48 + ErrorCode)
End | f
End Sub

Private Sub PBrickCtrl_downl oadSt atus(ByVal tinelnPBrickCrl As Long,
ByVal sizelnBytes As Long,
ByVal taskNo As | nteger)
D time.Caption timelnPBrickCrl
D_si ze. Caption si zel nByt es
D _Nr. Caption = taskNo
End Sub

The form elements (Iabels, text boxes etc.) are not listed explicitly, but their names should be obvious from the code and
intended functionality.

Good practice

Because all the SPIRIT.OCX methods use (constant) numbers to control the behaviour, we have found it useful to
define most of these numbers (global constants) in a separate include file, and then have a separate include file for each
project with specific settings.

The global constants make the programs more readable in general and the project specific constant definitions make the
program understandable in terms of the problem it triesto solve (the robot it triesto control).

November 1998 Page 6 of 110

Spirit.0CX

Technical Reference

Table of Contents

License Agreement
And Warranty Disclaimer

Introduction
Pre-requisites
Installing SPIRIT.OCX inVB
Property settings
Program structure
Example
Good practice

Commands (ActiveX Control)

Command overview
OCX Overview

- Event Dispatch Interface
Properties
ParameterTable (#1, #2)
Description of the commands
Description of OLE Events

General Functionality
Tasks
Immediate Control
Events
Inputs
Outputs
Timers
Variables
Properties

Appendix A:
- Download error handling

Appendix B:
- Error codes & messages.

Appendix C:
- RCXdata.bas

Appendix D:
- GetStarted.bas

Page 7 of 110

=

ORrDPWWWW

101
9-10
11-95
96

100
100
100
100
100
101
101
101

102

104

106

108

November 1998

Technical Reference

Spirit.0CX

OCX Overview

Communication control commands: PBrlck flow control commands:

= O Bool InitComm() 11 Bool Loop(Source, Number) 74

= O Bool CloseComm() 8 S Bool EndLoop() 75

= O Vaiant GetShortTermRetransStatistics() 13 S Bool While(Srcl, Nol, RelOp, Src2, No2) 76

= O Vaiant GetLongTermRetransmitStatistics() 8 * Bool EndWhile() 77

=4 O Bool SetRetr ansmitRetries(immidiateRetries, * Bool 11(Srcl, Nol, RelOp, Src2, No2) 78

downloadRetries) 17 * Bool Else() 79

= O Bool IgnDLerrUntilGoodAnswer () 23 i Bool EndIf() 80
= O Bool BeginOfTask(Number) 39

Firmwar e control commands: = O Short EndOfTask() 40

- BSTR UnlockPBrick() 24 = O Short End_OfTaskNoDownIoad() 41

=4 BSTR UnlockFirmware(UnlockString) 25 = O Bool BeginOfSub(Number) 42

= R Bool DownloadFirmware(FileName) 22 = O Shot EndOfSub() 43
= O Short EndOfSubNoDownload() 44

glagnostlcsocc:fmrgszltijvseommo 0 PBrick arithmetic/logical commands:

= O Bool TowerAndCableConnected() 35 = Bool SetVar(VarNo, Source, Number) 82

- O Bool TowerAlive() 36 = Bool SumVar(VarNo, Source, Number) 83
= Bool SubVar(VarNr, Source, Number) 84

PBrick system commands: EA Bool DivVar(VarNr, Source, Number) 85
= Bool MulVar(VarNr, Source, Number 86

= R Bool SelectDisplay(Source, Number) 26 EAS Bool SgnVar((VarNr, Source, Number)) 87

= R Bool SetWatch(Hours, Min) 27 = Bool AbsVar(VarNr, Source, Number) 88

S Bool PBPowerDownTime(Time) 30 EAS Bool AndVar(VarNr, Source, Number) 89

@: R goo: ESIUITOH(()N ber) gi = Bool OrVar(VarNr, Source, Number) 90

s 00 xPower (Num

24 Bool PlayTone(Frequency, Time) 66

RS Bool Plaz&/stg(msi)qund?lillumber) 67 PB“Ck query commands:

- Bool ClearTimer(Number) 7 O Bool SetEvent(Source, Number, Time) 37

- R Bool SendPBMessage(Source, Number) 94 = O Bool Clear Event(Source, Number) 38

N R Bool ClearPBMessage() %5 = Short Poll(Source, Number) 45
= Short PBBattery() 31
=

PBrick output control commands: Variant MemMap() 28

Z: gﬁ: g?f(('l\\"/l‘c’)tt‘;rrt'ii)) gg PBrick data acquisition commands (RCX only)

_— Bool Float(MotorList) 57 = R Boo SeDatalog(Size)

- Bool SetFwd(MotorList) 58 = R Boql DatalogNext(Source, quber) 92

-t Bool SetRwd(MotorList) 59 = R Vaiant UploadDatalog(From, Size) 93

EA Bool AlterDir(MotorList) 60

EAS Bool SetPower(MotorList, Source, Number) 61 ActiveX control commands:

* Bool Wait(Source, Number) 81 = O Bool SetThreadPriority(threadNo, threadClass,

= C Bool Drive(Number0, Numberl) 62 ThreadPriority) 18

* C Bool OnWait(MotorList, Number, Time) 63 = O Void GetThreadPriority(threadNo, threadClass,

A C Bool OnWaitDifferent(MotorList, ThreadPriority) 20

Number0, Numberl, Number2, Time) 64

=S C Bool ClearTachoCounter(MotorList) 65
ActiveX event dispatch interface:

PBrick input control commands: A VariableChange(Number, Value) 9%

=S R Bool SetSensor Type(Number, Type) 68 A DownloadDone(ErrorCode, TaskNo) 97

EES Bool SetSensorM ode(Number, Mode, Slope) 69 A DownloadStatus(timelnMS,

EL Bool Clear SensorValue(Number) 71 sizelnBytes, taskNo) 98

A AsyncronBrickError (Number,

PBrick program control commands: Description) 9
= R Bool SelectPrgm(Number) 47
= Bool DeleteTask(Number) 51
- Bool DeleteAllTasks() 52 Nomenklature:
4 Bool DeleteSub(Number) 53 = = Immediate Command.
= Bool DeleteAllSubs() 54 s = Download-able Command.
R = For RCX only
PBrick program execution commands: C = For CyberMaster only _
EAN Bool StartTask(Number) 48 (0] = Actlve?((OCX) command, nothing
S Bool StopTask(Number) 49 transmitted to the PBrick
= Bool StopAllTasks() 50 A = ActiveX asynchroneous events
* Bool GoSub(Number) 73

November 1998 Page 8 of 110

Spirit.OCX Technical Reference

ParameterTable #1/2

. Motor- | VarNo | RelO Time
Sour ce (Number in cells below) ! P
Comman List
Var. Timer Const. Motor Ran- Tacho Tacho Motor Prgm- Sensor- Sensor Sensor Sensor Sensor Waich PB- AGC > 0
Status dom Counter Speed Current No Vaue Type Mode Raw Bool. Mes- < 1
No. sage = 2
0) @ @] @®)) ce) c(e) e R(®) ©) (10 (1) R(12) R(13) R(14) R(15) C(16) < 3
on(MotorList) 0-31 . 0-7 . 0-7 0,1,2 . . .
Off(MotorList)
Float(MotorList)
SetFwd(MotorList)
SetRwd(MotorList)
AlterDir(MotorList)
SetPower (MotorList, Source, Number)
C ClearTachoCounter (MotorList)
. 0,1 . . .
SetEvent(Source, Number, Time) 0 0-10.000
Clear Event(Source, Number) mS
Poll(Source, Number)
0-31 0-3 . 0,1,2 . 0,1 0,1 2 X 0,1, 2 0,1, 2 0,1, 2 0,1,2 0,1,2 0 0 0
SetVar(VarNo, Source, Number) 031 03 322353 012 1-32767 01 01 2 . 01,2 01,2 01,2 0,1,2 0,1,2 0 0 . . 0-31 . .
SumVar (VarNo, Source, Number) 0-31 . -32768- 0-31 . .
SubVar(VarNo, Source, Number) 32767
DivVar(VarNo, Source, Number)
MulVar(VarNo, Source, Number)
SgnVar (VarNo, Source, Number)
AbsVar (VarNo, Source, Number)
AndVar(VarNo, Source, Number)
OrVar(VarNo, Source, Number)
L oop(Source, Number) 0-31 . 0-255 . 1-255
While(Sourcet, Number1, RelOp, Source2, Number2) 0-31 0-3 -32768- 0,1,2 . 0,1 0,1 2 . 0,1, 2 0,1, 2 0,1, 2 0,1,2 0,1,2 0 0 . 0 . 0-3 .
1f(Sourced, Number1, RelOp, Source2, Number2) 32167
Wait(Source, Number)
0-31 . 1- . 1-32767
32767
R DatalogNext(Source, Number)
0-31 0-3 0,1, 2 0
R SelectDisplay(Source, Number
play() 0-31 . 0-6
R SendPBM essage(Source, Number
o) 0-31 . 0-255

R: For RCX only C: For CyberMaster only

Page 9 of 110 November 1998

Spirit.OCX Technical Reference

ParameterTable #2/2

Number Time Freq Type Mode Slope From Size Hours Min. Motorlist | Immidiate- | Download-
Command Reties | Retries
@ Only usefor Poll
of Sensor-Type
(CyberMaster)
0: None 0:Raw 0: Absolute
1 Switch 1: Boolean 1-31: Dynamic
2: Temperature 2: Trans. Counter
3:Reflection 3: Period Counter
4 Angle 4: Percent
5:1D0 Switch ® 6: 5: Celsius 6:
ID1Switch® 7: Fahrenheit 7
1D2 Switch @ Angle
BeginOfTask(Number) C: 0-3
DeleteTask(Number)
StartTask(Number) R 0-9
ResumeT ask(Number)
StopTask(Number)
BeginOfSub(Number) C: 0-3
DeleteSub(Number)
Gosub(Number) R 0-7
C Drive(NumberO, Numberl)
77

R SetSensor Type(Number, Type)
Clear Sensor Value(Number) 0,1,2 . . C: 0-4 0-31
SetSensor M ode(Number, Mode, Slope)

R: 0-4 R: 0-7
PlayTone(Frequency, Time) 0-5 1-255 1-20,000
PlaySystemSound(Number) [10ms]
Clear Timer (Number) 0-3
PBPower DownTime(Time) . 1— 255 [min]
O=forever
R SelectPrgm(Number)
0-4
R SetWatch(Hours, Minutes)
. 0-23 0-59 . . .
R SetDatalog(Size
oo) 0~ deletelog
area.
1-available
Memory
R UploadDatalog(From, Size
pl og() 0-avalable 1- 50
Memory
R PBTxPower(Number)
0-1
C OnWait(MotorList, Number, Time)
77 0-255 0,1,2 . .
[200mS 1]
C OnWaitDifferent(MotorList, Number0, Number1, Number2,
Time) -7->7 0-255 0,1,2 . .
[200mS 1]
SetRetransmitRetries(immidiateRetries,
downloadRetries) . 0-32767 1-32767

R: For RCX only. C: For CyberMaster only

November 1998 Page 10 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
InitCommy()

O Downloadable Command
M Immediate Command

InitComm initialises the PC-Serial communication port.

The communication port (COM1, COM2, COM3 or COM4) can be selected via the property
ComPortNo.

The type of transmitter link (CABLE, IR or RADIO) can be selected viathe property LinkType.
Type of PBrick (CyberMaster or RCX) can be selected via the property PBrick.
Nothing is sent from the PC to the PBrick — it only sets up Spirit OCX.

This command should be used as the very first one (i.e. it initialises all communication features in
Windows).

Part: Description:

Return value: If the initialisation succeeds, the return value is set to TRUE.
If theinitialisation fails, the return value is set to FAL SE.

Example 1: Values set via a property editor.

If PBrickCtrl.InitConm Then If the property ComPortNo is set to 1 this
Label 1. Caption = “Comminit K" initialises the PBrick communication to
El se COMM-port 1 (COM1).
Label 1. Caption = “Init Comm FAI LED’ LinkType and PBrick depends on the
Endl f settings of the LinkType and PBrick
Properties.

Example 2: Values set by program code

PBrickCtrl.LinkType = 2 Radio=2 (IR=0and Cable = 1)
PBrickCirl.PBrick =0 CyberMaster =0 (RCX =1)
PBrickCtrl.ComPortNo = 3 Communication port COM 3 selected.
Label 1. Caption = PBrickCrl.InitComm Initialise the communication.

Page 11 of 110 November 1998

Spirit.0CX

30)
. Technical Reference

CloseComm()

M CyberMaster Command
M RCX Command

O Downloadable Command
M Immediate Command

CloseComm closes the serialport so other applications can take over the port. E.g. low level debug

tools.

Used when the user needs additional help for setting up his’her computer-system.

Example:
PBrickCtrl. I nitComm

If PBrickCtrl. Tower Ali ve Then
El se

PBrickCtrl.C oseComm
End |f

November 1998

COM port initialised with the parameters set in
the properties.

Tower isaive and H/W port works OK.

Ready for debug with low-level H/W debug
code.

Page 12 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

GetShortTermRetransStatistics()

O Downloadable Command
M Immediate Command

This command is used for checking the signal quality of the actual transmission. I.e. isthe
transmission disturbed by noise (CyberMaster) or external light (RCX)? Is the PBrick out of range?
|s there an object between the sender and receiver (RCX)?

Anincreasing count of retransmission and/or signal corrections (CyberMaster) can signa the user
application that there is some degrading of the signal quality. The user application can then decide
what to do:

Ask the user to move the PBrick closer to the Transceiver Tower. Manualy
(RCX/CyberMaster) or under joystick control (CyberMaster).

If the PBrick is ‘out of range’ then a continuous retransmission will affect the communication
between the PBrick and the user application. The retransmissions will lower the rate of
information from the PBrick. Has the transmitted command(s) been received or not. The answer
is delayed until the retransmission has finished. By lowering the setting of the retransmission
rate, the application can get faster answers. To set the retransmission rate use the command
SetRetransmitRetries(ImmidiateRetries, DownloadRetries) - see page 17 for further
information. By default the retransmission rate is set to 5 and 10 (I.e. atotal of 5 transmissions
for immediate commands and a total of 10 for downloaded commands).

This command shows only information collected since last call. I.e. the info is automatically reset in

the ActiveX control after each call. For long term transmission quality (from program start) see
GetL ongT er m-RetransmitStatistics on page 15.

Part: Description:

Return value: Variant. A two-dimensional OLE variant array. See the following page for a
description of each element.

The returned information is positioned in the returned variant array as described on next page.

Page 13 of 110 November 1998

Spirit.OCX Technical Reference
Element: 1st Dimension: 2nd Dimension: Description:
1 Total count of trans- | Total count of error | Total transmitted bytes normally 1 in noisy
mitted commands corrected bytes since | environments (I.e. function called after each
since last call. last call. command sent).
Total error corrected bytes are showing the count
of bytesin which one or more error correction(s)
have been performed. Counted since last call.
2 Count of OK trans- | Count of answers Commands without any retransmission. Succeeded
missions. Error corrected in first transmission. Counted since last call.
Transmitted without | without any retrans- | Count of corrected answers without any
any retransmission. | mission. retransmission. Counted since last call.
3-12 Count of trans- Count of commands | Count of commands with 1-10 retransmission
missions succeeded | error corrected and | before success. Counted since last call.
after 1- 10 retrans- succeeded after 1-10 | Count of commands succeeded when retransmitted
mission. retransmission. 1-10 time and error corrected. Counted since last
call.
Example:

Private Sub Commandl _C i ck()

Dim Stat As Vari ant The value received as a safe
Dm1l As Long array
Dimval 1l As Integer
Dimval 2 As Integer
Stat =
PBrickCtrl. Get Short TernRetransStati stics()
Listl. C ear
For | = LBound(Stat, 2)To UBound(Stat, 2) Get size
Vall = Stat (0, 1) Get ReTx element
Val 2 = Stat (1, I) Get ErrorCorrect
Count
Listl. Addltem Str(val) + " "+ Str(val 2) Display values
Next | Repeat n times.
End Sub

November 1998

Page 14 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
GetLongTermRetransmitStatistics()

O Downloadable Command
M Immediate Command

This command is used for checking the overall signal quality. The returned information is collected
from program start.

A high count of retransmissions and/or signal corrections(CyberMaster) can be the result of an
environment with alot of electrical noise (CyberMaster) or room with much light (RCX). The user
application can ask the user to:

Move the PBrick away from the light (RCX). Place the transceiver tower away from the
computer/monitor or other electrical equipment.

If the PBrick is near ‘out of range’, the user application should ask the user, to move the PBrick
closer to the Transceiver Tower.

The command shows information collected since program start. For short term transmission quality,
see GetShortTer mRetransStatistics on page 13.

Part: Description:

Return value: Variant. A two-dimensional OLE variant array. See the following page
for a description of each element.

The returned information is positioned in the returned variant array as described on the following
page.

Page 15 of 110 November 1998

Spirit.OCX Technical Reference
Element: 1st Dimension: 2nd Dimension: Description:
1 Total count of trans- | Total count of error- | Total transmitted bytes since program start.
mitted commands corrected bytes since | Total error corrected bytes are showing the count of
since program start. | program start. bytes in which one or more error correction(s) have
been performed. Counted since program start.
2 Count of OK trans- | Count of answers Commands without any retransmission. Succeeded in
missions. error corrected first transmission. Counted since program start.
Transmitted without | without any retrans- | Count of corrected answers without any
any retransmission. | mission. retransmission. Counted since program start.
3-12 Count of trans- Count of commands | Count of commands with 1-10 retransmission before
missions succeeded | error corrected and | success. Counted since program start.
after 1-10 retrans- succeeded after 1-10 | Count of commands succeeded when retransmitted
mission. retransmission. 1-10 time and error corrected. Counted since program
Start.
Example:

Private Sub Commandl _C i ck() The value received as a safe
Dim Stat As Vari ant array.
DmI| As Long
Dimval 1l As Integer
Dimval 2 As Integer
Stat =
PBrickCtrl. GetLongTernRetransmtStatistics()
Listl. C ear
For I = LBound(Stat, 2) To UBound(Stat, 2) Get size
Vall = Stat (0, 1) Get ReTx element
Val 2 = Stat (1, 1) Get ErrorCorrect
count
Listl. Addltem Str(val) + " "+ Str(val 2) Display values
Next | Repeat n times.
End Sub

November 1998

Page 16 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

SetRetransmitRetries(ImmidiateRetries, DownloadRetries)

O Downloadable Command
M Immediate Command

This command is used to fine-tune the rate of retransmission. The retransmission count can differ
due to radio noise (CyberMaster), incoming light (RCX) or an out of range situation.

The command is very useful for getting an ‘out of range’ Pbrick back in contact. The return answer
from the PBrick can be set in a“don’'t care” state. |.e. the application can continue to send motor
commands to the PBrick and ignore the answers without the overhead of extensive retransmissions.

Part: Description:

Return value: If the function succeeds, the return valueis set to TRUE.
If the function fails, the return valueis set to FALSE.

ImmidiateRetries. Aninteger value for setting the retransmissions (total count of
transmissions) for immediate commands. Range 1(0) - 32767. Default 5.
The ImmidiateRetries can be set to zero (0) meaning the answer from the
PBrick istotally ignored. Thisis useful when the PBrick gets “out of sight”.

DownloadRetries:. Aninteger for setting the retransmissions while downloading program
sequences and firmware (RCX). Range 1 to 32767. The default value is
initially set to 10.

Example:
PBrickCirl.SetRetransmtRetries(1, 10) | Needearly warning if model cannot “hear”

the commands. Normal retries when
downloading.

Page 17 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

SetThreadPriority(threadNo, threadClass, ThreadPriority)

O Downloadable Command
M Immediate Command

This command is used to fine tune the performance of the user application/OCX. Both the process
priority and the thread priority in the ActiveX component can be set/changed. Normally only the
ActiveX threads should be manipulated.

The threadNo which is of the type THREADNAME is used to address the thread. ThreadClass
which is of the type PROCESSPRIORITY CLASS addresses the priority class of the process. It
should never be accessed with values other than DefaultClass = 0 (Nothing changes).
ThreadPriority is avariable of the type THREADPRIORITY and it sets the priority of the thread
addressed by threadNo.

The InitComm command should be used before this command.

Part: Description:

Return value: If the function succeeds, the return valueis set to TRUE.
If the function fails, the return valueis set to FALSE.

threadNo Isavariable of the type THREADNAME. In the ActiveX control the
following threads are used:
CommPortThread = 0
EventThread = 1
DownloadThread = 2

Other values will beignored.

threadClass Isavariable of the type PROCESSPRIORITY CLASS. This variable defines
the different types of priority classes for the running process. Remember al
the threads run in one single process. Changing this value for one process
will ater the priority class for al the other threads. This is because thistype
of priority attaches to the process and not the thread. The default valueis 3
(NORMAL_PRIORITY_CLASS). The following table shows the mapping
between the internal priority class representation (values from 0 - 4) into the
real win32 values:

November 1998 Page 18 of 110

Spirit.OCX

Technical Reference

Win32 Internal
DefaultClass = 0
HIGH PRIORITY_CLASS = 1
IDLE PRIORITY_CLASS = 2
NORMAL_PRIORITY_CLASS = 3
REALTIME PRIORITY_CLASS = 4

When the Set method is called with an O (DefaultClass) the ActiveX control will not try to ater the priority

classfor the process. Thisis highly recommended.

ThreadPriority Isavariable of the type THREADPRIORITY . Defines the thread priority for the threads.
The following table shows the mapping between the internal thread priority representation (values from O -

6) into the real win32 values:

Win32

Internal

THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_IDLE
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_TIME_CRITICAL

The default values for the three threads are;

Thread Default value
CommPortThread = 6
EventThread = 5
DownloadThread = 5

Example:

Di m pc As | nteger
Dim pr As |nteger
D m nane As | nteger

nane = Text 1. Text
pc =0

pr = Text 2. Text

If PBrickCirl.Set ThreadPriority(nane, pc, pr) Then
Text 3. Text = “CK”

El se
Text3. Text = “Error in SetThreadPriority”

End |f

Page 19 of 110

T O | | A VA
O WNEO

Don't change the priority
classfor the process.

November 1998

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

GetThreadPriority(threadNo, threadClass, ThreadPriority)

O Downloadable Command
M Immediate Command

This command is used to get information about the current thread priority and performance of the
user application/OCX. Both the process priority and the thread priorities in the ActiveX component
can be read by this command

The threadNo which is of the type THREADNAME is used to address the thread. The priority class
of the process is returned via the threadClass which is a pointer of the type

PROCESSPRIORITY CLASS. The priority of the thread addressed by threadNo is returned via the
ThreadPriority which is a pointer of the type THREADPRIORITY .

The InitComm command should be used before this command.

Part: Description:
threadNo Isavariable of the type THREADNAME. In the ActiveX control the
following threads are used:
CommPortThread = 0
EventThread = 1
DownloadThread = 2
If ThreadNo is out of range, the value of ThreadClass and ThreadPriority will
be set to -1.
threadClass Returns the value of the priority class of the process.

The default value is 3 (NORMAL_PRIORITY_CLASS). The following table
shows the mapping between the internal priority class representation (values
from O - 4) into the real win32 values:

Win32 Internal
DefaultClass = 0
HIGH PRIORITY_CLASS = 1
IDLE PRIORITY_CLASS = 2
NORMAL_PRIORITY_CLASS = 3
REALTIME PRIORITY_CLASS = 4

November 1998 Page 20 of 110

(EGO)
Spirit.OCX . Technical Reference

ThreadPriority Returns the value of the thread priority addressed by the ThreadNo.

The following table shows the mapping between the internal thread priority representation (values from O -
6) into the real win32 values:

Win32 Internal

THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_IDLE
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_TIME_CRITICAL

1 1 O O | I
o wWNEO

The default values for the three threads are;

Thread Default value
CommPortThread = 6
EventThread = 5
DownloadThread = 5

Example:

To get information about the
Dim pc As Integer CommPortThread the following VB
Dim pr As Integer code could be used (there is no check
Di m nane As I nteger for failure).
name = 0 CommpPort

PBrickCirl. Get ThreadPriority(nane, pc, pr)
Label 1. Capti on = pc
Label 2. Caption = pr

Page 21 of 110 November 1998

Spirit.0CX

30)
. Technical Reference

0 CyberMaster Command
M RCX Command

DownloadFirmware(FileName)

O Downloadable Command
M Immediate Command

First it sets the PBrick in ‘Boot Mode (acts like a PBrick without firmware). Next this command
downloads the firmware version pointed to by ‘FileName'.

This command will delete all downloaded tasks. The download may take a few minutes!

Part:

Description:

FileName:

Return value:

Example:

Points to the file holding the firmware to be downloaded. The file nameisa
string holding both the PATH and the FILENAME following the normal
operating system syntax.

If the start-up of the download succeeds, the return value is TRUE, otherwise
the return value is FAL SE.

The DownloadStatus event (see page 98) includes information about
download size in bytes, the estimated download time, and the download type
(here the typeis “1007, i.e. firmware download).

The download is done in a separate thread in the ActiveX control, so the load
on the control program should be minimal. Error(s) detected in the download
thread will be sent to the user application as an event:

The result of the firmware download will be sent in the DownloadDone event
(See page 97).

DownloadDone event message:

0: Everything OK

1: Download failed. Further information in the Asyncron-BrickError
event (see page 99). Error code and description are both sent viathis
event.

PBrickCrl . Downl oadFi rmvare " FI RMD309. LGO' Downloads the firmware to the PBrick,

November 1998

from the disk file FIRM0309.LGO

Page 22 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

IgnDLerrUntilGoodAnswer()

O Downloadable Command
M Immediate Command

The command sets an internal flag in the OCX. Used to flag a specia transmission mode.

This command is used to recover from atransmission deadlock in a download. If the PBrick
receives a command, considersit OK and replies with the normal Acknowledge it changes state and
waits for the next block in the download.

But if the transceiver tower never receives this Acknowledge, the current transmission may come
into a Deadlock (i.e. Transceiver Tower waits for the PBrick to reply and the PBrick waits for the
next block in the download).

By issuing this command the download is set in a sort of “Error Tolerant” mode: The next program
to download will start its download from the block that failed. This means that you have to
download the same program.

Before starting the new download, the user should send a transmitted command (such as
PBAIliveOrNot) viathe OCX. Thisisto synchronise the PBrick communication. It is very important
to send a transmitted” command before sending the new “ BeginOfDownload” (Task or Sub).

Only real transmitted commands effects the togglebit. Host specific commands (e.g.
InitComm) do not effect the togglebit.

PLEASE NOTE: Never send the DeleteT ask command.

Example:

PBrickCirl . Begi nOf Task O

..... many |ines of code Something disturbs the transmission between the
EndOf Task PBrick and the Tower.

The AsyncronPBrickError returns
"TOO_MANY_RESENDS" i.e. we can not receive
an acknowledge.

Label 1 = PBrickCtrl. PBAliveO Not
PBrickCtrl.lgnDLerrUntil GoodAnswer New transmission started, the OCX continues until
PBrickCtrl.Begi nOf Task 0 an acknowledge is received and the download then

e continues.
EndCOF Task

Page 23 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
UnlockPBrick()

O Downloadable Command
M Immediate Command

This command is used for retrieving the ROM version. In the RCX PBrick the command aso
returns the version of the downloadable part of the firmware.

The ROM version is hardware specific for both the RCX- and the CYBERMASTER PBrick, while
the firmware (RCX) is relating to the actual downloaded firmware in the RCX PBrick.

Part: Description:

Return value: A Basic string representing the version of the PBrick ROM and the
downloadable firmware.
An 11 character string is returned:

RR.rr/AA.aa

Where: RR represents the version of the ROM
rr refersto the actual release of the ROM.
AA represents the version of the downloadable part of the firmware.
aa refersto the actual release of the downloadable part.

Example (RCX):

Label 1. Caption = PBrickCtrl. Unl ockPBri ck After the call the LABEL1 show:
03.02/03.09

ROM version 3, release 2.
The downloaded part of the System is
version 3, release 9.

Example (CYBERMASTER):

Label 1. Caption = PBrickCtrl.Unl ockPBri ck After the call above LABEL1 shows:
01.02/00.00

ROM version 1, release 1

November 1998 Page 24 of 110

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

UnlockFirmware(UnlockString)

O Downloadable Command
M Immediate Command

This command is used to open the command interpreter in the PBrick.

RCX: The UnlockFirmware command should be issued after each new download of
the downloadable firmware (e.g. after battery change or update of software).

CyberMaster: The UnlockFirmware command should be sent after each power up. The
command also sets the powerdown time to 10 min. implicitly.

Part: Description:

UnlockString: The 1st part of LEGO copyrighted unlock handshake string:
"Do you byte, when | knock?"

Return value: Users trying to use another UnlockString are forced to display the LEGO
logo. A DirectX application will not show the logo, but the MessageBox pops
up behind the active DirectX application and freezes the application. The user
can use a correct UnlockString to prevent the MessageBox from popping up,
but then he has to use the LEGO copyrighted text string.

Example 1 (Correctly supplied UnlockString:)

Label 1. Caption = PBrickCtrl. Unl ockFirmnare(“Do you byte, when I knock?")

This example will set the label
Label1.Caption to “Thisisa LEGO
Control OCX communicating with a
LEGO PBrick!” if the UnlockFirmware
succeeds else the LABEL 1.Caption is set
to: “Unlock failed”.

Example 2 (Invalid UnlockString supplied:)
Label 1. Caption = PBrickCrl.Unl ockFi rmnare(” XYZ")

This example will set the label
LABEL1.Caption to “The LEGO Control
OCX can not get avalid PBrick Unlock
string!” and the MessageBox will pop up
or block the application (DirectX).

Page 25 of 110 November 1998

Spirit.OCX

Technical Reference

SelectDisplay(Source, Number)

[0 CyberMaster Command
M RCX Command

M Downloadable Command
M Immediate Command

This command is used to perform the same operation as pressing the ‘ Select key’ on top of the RCX

PBrick.
Part: Description:
Source Source can be either aVAR or a CONSTANT type.
Number: If Sourceisa VAR then the range for Number is 0-31.
If Sourceisa CONSTANT the range for Number is 0-6.
If the selected VAR (0-31) contains a value <0 or >6 then the SelectDisplay-
command is ignored.
Constant pointed to by Number Display shows:
or value in Var (0-31):
0 SoftwareWatch
1 Input 0 (labeled 1 on the box)
2 Input 1 (labeled 2 on the box)
3 Input 2 (labeled 3 on the box)
4 Output O (1abeled A on the box)
5 Output 1 (labeled B on the box)
6 Output 2 (labeled C on the box)
Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.
Example:

PBrickCtrl.SelectDisplay 2, 5 The display on the PBrick will show the power setting of
output “1”. E.g. adisplayed 4 equals power level 4.

November 1998

Page 26 of 110

(EGO) .
Spirit.OCX . Technical Reference

[0 CyberMaster Command
M RCX Command

SetWatch(Hours, Min)

M Downloadable Command
M Immediate Command

Sets the PBrick Software Watch. The watch is a 24-hours type (i.e. 0 to 23:59).

Part: Description:

Hours: Sets the Hour part of the PBrick’ sinternal software watch (0 - 23).
Min: Sets the Minute part of the PBrick’ s internal software watch (0 - 59).
Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCirl. SetwWatch 13, 22 | Setstheinternal software watch to 13:22.

Page 27 of 110 November 1998

Spirit.0CX

30)
. Technical Reference

MemMap()

M CyberMaster Command
M RCX Command

O Downloadable Command
M Immediate Command

Returns an variant (i.e. a safe array) of memory pointers.

Part: Description:
Return value: A complete memory map in avariant (safe array).
Array elements
(RCX): ErrorCode Inver_ted MemMap command for <OK> and 0x00
flagging a<FAIL>
Sub00, ...Sub07, Sub00 = pointer to <Program0, Sub0>
Sub10, ...Sub17, Sub17 = pointer to <Program1, Sub7>
Sub40, ...Sub47, Sub47 = pointer to <Programd, Sub7>
Job0Q0,Job09, Job00 = pointer to <Program0, Job0>
Job40,Job49, Job49 = pointer to <Programd4, Job9>
Log, Pointer to start of Datalog Area
CurrentLog, Most recent datalog
MemUsed, Total of mem used (incl. alocated datalog area)
MemTop Pointer to last byte in UserMemory
Array elements
(CyberMaster): ErrorCode Inverted MemMap command for <OK> and
0x00 flagging a<FAIL>
SubO00, ...Sub03, Sub00 = pointer to <Program0, Sub0>

November 1998

Job00,Job03,

MemUsed,

MemTop

Sub03 = pointer to <Program0, Sub3>

Job00 = pointer to <ProgramO, Job0>
Job03 = pointer to <ProgramO, Job3>

Total of mem used (incl. allocated datalog area)

Pointer to last byte in UserMemory

Page 28 of 110

(EGO) .
Spirit.OCX . Technical Reference

All elements are pointers represented as 16-bit signed integers (due to the OLE/safe array interface.)
The size of any element can be calculated as: (Ptr to next element) — (Ptr to this element).

ErrorCode Isa16-hit flag showing OK or FAIL. Inverted MemMap command means an
OK MemMap returned. A “0x00" flags an error.

SubXY Points at the start address of subroutine Y in program X.
JobXY Points at the start address of task Y in program X.
Log The element points at the start of the datalog area.

CurrentLog The element points to the last element currently logged.

MemUsed Thiselement pointsto the last allocated byte in the user ram. Hence, it also
points to the last byte in the datalog area.

MemTop Pointsto the last available byte in user ram. I.e. MemTop and User Memory
Size areidentical.

Example MemMapListbox List of “pointers
elements’ StatusLabel - Shows result of
operation (error code).

Private Sub Commandl O i ck()

Dim Stat As vari ant Datareturned in a safe array
Dm Il As Integer
Di m MenVal ue As | nteger

Stat = PBrickCrl. Mnvap

MenVal ue = Stat (LBound(Stat)) First element = ErrorCode
Label 1. Capti on = Str(MenVal ue) Show status

Li st 1. C ear Clean up the listbox.

For | =LBound(Stat) + 1 To

UBound(St at)
MenVal ue = Stat (1)
Li st1. Addltem Str(Menval ue)

Next | Iterate over the elements
End Sub

Page 29 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
PBPowerDownTime(Time)

O Downloadable Command
M Immediate Command

Sets the PBrick’s Auto PowerdownTime. (The PBrick’ s default Powerdown time is 15 minutes).

Part: Description:

Time: 0 - 255.
The PowerdownTime is set in minutes [1 to 255].
If Timeissetto“0” (zero) it means auto powerdown
isdisabled (i.e. the PBrick is on forever).
See Parameter Table for ranges, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl . Power DownTi me 120 | The PBrick’s auto powerdown time is set to 2 hours.

November 1998 Page 30 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

PBBattery()

O Downloadable Command
M Immediate Command

PBrick Battery check. The function returns the voltage of the PBrick battery. The value is an
average sampled over the last 30 seconds. |.e. a start-up of a motor will not affect the value.

Part: Description:

Return value: Voltage returned in a signed integer (short). If the function succeeds, the
return value is the battery voltage in mV. Otherwise a zero (0) isreturned. If
the PBrick is not accessible (e.g. Turned off) an error will be issued. The
user application should have an error handler, e.g. Visua Basic On Error
Goto <IbIMyErrorHandler>.

Example:

Label 1. Caption = PBrickCirl.PBBattery() Sets label "Label1” to the voltage level of
the PBrick’s batteries [millivolts].

Page 31 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

PBAIliveOrNot()

O Downloadable Command
M Immediate Command

Use this command as a quick way to determine whether the PBrick is able to answer or not (The
whole set-up, SW, Cable, transceiver tower, and PBrick is tested).

Part: Description:
Return value: Boolean. If the PBrick is alive and within range, the return value is set to
TRUE.

If no answer is received from the PBrick within the timeout period, the return
valueis set to FALSE.

Example:
If PBrickCirl.PBAiveO Not Then
Label 1. Capti on = “COK conmuni cati on”
El se
Label 1. Capti on = “Unable to comuni cate with the PBrick”
Endl f

November 1998 Page 32 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

PBTurnOff()

M Downloadable Command
M Immediate Command

The PBrick stops al running jobs, and turnsitself off.

Part: Description:

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

If PBrickCrl.PBTurnOFf Then If the PBrick isturned off correctly the
Label 1. Caption = “PBrick Turned OFF” returned valueis TRUE.

El se
Label 1. Caption = “PBrick Status UnKnown”

Endl f

Page 33 of 110 November 1998

Spirit.0CX

Technical Reference

0 CyberMaster Command
M RCX Command

PBTxPower(Number)

M Downloadable Command
M Immediate Command

Set the IR transmitter power of the RCX PBrick. If more than one RCX is used in the same room,
the TxPower should be set to Low, to prevent the RCXs from interfering with each other. (The
transmitter power of the transceiver tower has to be set manually with the switch on the front of the

tower).
Part: Description:
Number: 0: Short range mode
1. Long range mode.
Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.
Example:

If (PBrickCirl.PBTxPower 1) Then

Label 1. Caption =
El se
Label 1. Capti on

Endl f

November 1998

“PBrick setup for LONG range”

“PBrick Status UnKnown”

The PBrick isforced into LONG
range tx.

Page 34 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

TowerAndCableConnected()

O Downloadable Command
M Immediate Command

Used to detect a correctly connected cable and transceiver tower. The command uses the “ Request
To Send” (RTS) and the “Clear To Send” (CTS) signal to check for the hardware connection.

The command toggles the RTS line and the signal is shortcircuited to the CTS line by ajumper in

the transceiver tower. The function detects the transition of the CTS line, so a cabling failure should
not give awrong signal (except a shortcircuited RTS/CTS).

Part: Description:

Return value: If the cabling is OK, the return value is TRUE.
If the function fails, the return value is FALSE.

Example:

If PBrickCirl. Tower AndCabl eConnected Then

Label 1. Caption = “Hardware cabling K’
El se

Label 1. Caption = “Hardware FAIL! Pl ease control the cabling.”
End If

Page 35 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

O CyberMaster Command
M RCX Command
TowerAlive()

O Downloadable Command
M Immediate Command

Used to check the status of the transceiver tower. |s the hardware and battery OK? Due to the fact
that the infrared Receiver can “see” the transmitted signal, the input buffer of the serial channel will
contain a copy of the transmitted bytes. This optical feedback can be used as an alive check of the
Tower. Thetest isaso asimple check of the battery in the TxTower.

This command always first checks the total transmission by sending an implicit PBAliveOrNot. If
the PBAIliveOrNot command returns FALSE, a special transmission string is sent to the transceiver
tower. The crosstalk in the transceiver tower is used for thistest. If thistest fails the string is only
sent twice, not with the RetransmitRetries setting.

IMPORTANT: Should always be used after a TowerAndCableConnected command. A short-
circuited cable and/or crosstalk in the hardware could affect the result (i.e. give a TRUE without
any tower connect).

Part: Description:
Return value: If Tower isaive (i.e. battery and hardware OK), the return valueis
TRUE.

If the function fails, the return valueis FAL SE.

Example:

If PBrickCtrl. TowerAlive Then

Label 1. Caption = “Tower hardware and battery K’
El se

Label 1. Caption = “Tower HWFAIL or Tower battery should be changed!”
End If

November 1998 Page 36 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
SetEvent(Source, Number, Time)

O Downloadable Command
M Immediate Command

Sets and enables the autopolling feature. When enabled the OLE control automatically polls
Variable O (zero) of the PBrick with the time interval set by the value of Time. If a change of
Variable O (zero) is detected, the ActiveX control automatically sends an OLE event to the
application.

Hence, the impact on the user application is minimal.

All internals in the PBrick can be scanned. The downloaded program should include a small routine
which sends or refreshes the required data into Variable 0.

Part: Description:
Source, Source and Number addresses what to autopoll for.
Number: See ParameterTable for ranges, page 9.
(Currently only implemented for Variable 0)
Time: Sets the time interval for the autopoll (in ms.).
Return value: If the function succeeds (i.e. the set-up of the event in the ActiveX contral),

the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCirl. Set Event(Var, 0, 300) Set up autopolling on variable 0, with atime
interval of 300ms.

If any changes in variable occur, the OLE event VariableChange will be sent to the application,
reflecting the new value for Variable 0. (See page 96)

Page 37 of 110 November 1998

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
ClearEvent(Source, Number)

O Downloadable Command
M Immediate Command

Clears an event set up by SetEvent (see page 37).

Part: Description:
Source, Source and Number point out what to disable autopoll for.
Number: See ParameterTable for ranges, page 9.

(Currently only implemented for Variable 0).

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

November 1998 Page 38 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

BeginOfTask(Number)

O Downloadable Command
M Immediate Command

Initialises a task download sequence. All commands following this, and until the EndOf Task or
EndOfTaskNoDownload commands will be buffered in the ActiveX control. The actual compilation
and download of the code to the PBrick will start when the EndOfTask or EndOf TaskNoDownload
command is received.

When the download is finished, the ActiveX control will send the ‘DownloadDone’ event with
information about the result of the download. See page 97 for more information about the
DownloadDone event.

Part: Description:
Return value: If start-up of buffering commands is started OK, the return valueis
TRUE.

If the function fails, the return value is FAL SE.

Example This example downloads a program to task 1:

PBrickCirl.Begi nOf Task 1 Initialises download to task 1
PBrickCirl.On “01” Starts motor 0& 1
PBrickCirl.Wait 100 Stops program execution for 1 sec.
PBrickCrl.Of “01” Stops motor 0& 1

PBrickCtrl.EndOf Task Ends the download sequence.

When the EndOf Task command is reached, the program buffered in the ActiveX control is
compiled, syntax checked and transferred to the PBrick viathe transceiver tower.

Estimated download time and compiled size of the task will be sent in the DownloadStatus event,
See page 98.

Page 39 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

EndOfTask()

O Downloadable Command
M Immediate Command

Part of BeginOfTask...EndOfTask sequence.

For further details see BeginOfT ask.

Part: Description:

Return value: Short type. If the startup of this command, i.e. the compiler and download
started OK, the return value = 1. Any error in the compile- and download
thread will result in areturn value of 0.

Further inforeturned in:

DownloadStatus: The user will receive info about the task size (compiled), estimated
download time and task number in this event.

DownloadDone: When the download is finished the user will get this event. A non zero-
value (i.e. 1) indicates that an error occurred. A value of zero (0) indicates
that the transfer of the task was OK. If a 1 isreceived further information is
given in the AsyncronBrickError event. To synchronise these two eventsin a
single threaded application (e.g. Visual Basic) some user synchronisation
should be implemented: See Appendix A on page 102 for further details.

AsyncronBrickError: This event sends an ErrorNumber and an ErrorDescription

Example 1:
PBrickCtrl.Begi nOf Task 1 Initialises download to task 1

En d O Task Ends the download sequence.

Example 2:

PBrickCtrl.Begi nOf TAsk 4 Initialises download to task 4
PBrickCrl.On “01”

EnF;IBCrIITCachit ri. SetFwd “2 Ends the download sequence.

November 1998 Page 40 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

EndOfTaskNoDownload()

O Downloadable Command
M Immediate Command

This command is used to gain info about the compiled and downloadable task in advance of the real
download.

If the amount of free RAM in the PBrick is small, the user can check for needed space by using this
command and the MemMap command, see page 28 for information about MemMap.

Part: Description:

Return value: Short type. If the startup of this command, i.e. the compiler and download
started OK, the returned value is 1. Any error in the compile thread will result
in areturn value of 0.

Further information returned in:

DownloadStatus: The user will receive info about the task size (compiled), esitmated download
time and task number in this event.

Example:

Example 1: (The download function)

Storage for memory info
PBrickCtrl.Begi nOf Task 1 Initialises download to task 1
PBrickCrl . EndCOf TaskNoDownl oad Ends the pseudo-download and get the
block-size etc. in the DownL oadStatus
event.

Example 2: (The download info returned in the DownloadStatus event)

PBri ckCtrl _Downl oadSt atus (ByVal Downl oadTi mel nM5 As Long,
ByVal sizelnBytes As Long,
ByVal taskNo As Integer)

Label 1. Capti on = Downl oadTi el n\vV5 Expected download time.
Label 2. Capti on = sizel nBytes Size of the compiled task in bytes.
Label 3. Caption = taskNo Number of the task.

Page 41 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

BeginOfSub(Number)

O Downloadable Command
M Immediate Command

Initialises a subroutine download sequence. All commands following this, and until the EndOfSub
or EndOf SubNoDownload command will be buffered in the ActiveX control. The real download to
the PBrick is started when the EndOfSub and EndOf SubNoDownload commands is reached.

When the download is finished, the ActiveX control will send the ‘DownloadDone’ event with

information about the result of the download. See page 97 for more information about the
DownloadDone event.

Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FAL SE.

Example: This example downloads a program to Subroutine 1.

PBrickCtrl.Begi nOf Sub 1 Initialises download to Subroutine 1.
PBrickCtrl.Loop 2, 8 L oops 8 times through the following block.
PBrickCrl.Sunvar 3, 0, 2 Adds two to Variable 3.
PBrickCtrl.EndLoop Ends the loop.
PBrickCtrl.EndOf Sub Ends the download sequence.

When EndOfSub command is reached, the program buffered in the ActiveX control will be
compiled, syntax checked and transferred to the PBrick viathe transceiver tower.

November 1998 Page 42 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

EndOfSub()

O Downloadable Command
M Immediate Command

Part of BeginOfSub...EndOfSub sequence.

For details see BeginOfSub on page 42.

Part: Description:

Return value: Short type. If the startup of this command, i.e. the compiler and download
started OK, the return value = 1. Any error in the compile- and download
thread will result in areturn value of 0.

Further inforeturned in:

DownloadStatus: The user will receive info about the subroutine size (compiled), estimated
download time and task number in this event.

DownloadDone: When the download is finished the user will get this event. A non-zero
value (i.e. 1) indicates that an error occurred. A value of zero (0) indicates
that the transfer of the task was OK. If avalue of 1 isreceived further
information is given in the AsyncronBrickError event. To synchronise these
two events in a singlethreaded application (e.g. Visual Basic) some user
synchronisation should be implemented. See Appendix A on page 102 for
further details.

AsyncronBrickError: This event sends an ErrorNumber and an ErrorDescription

Example 1:
PBrickCtrl.Begi nOF Sub 1 Initialises download to subroutine 1

PBrickCtrl.EndOf Sub Ends the download sequence.

Example 2:

PBrickCtrl.Begi nOf Sub 1 Initialises download to subroutine 1
PBrickCtrl.On “1”
PBrickCrl.AterDir “2"
PBrickCtrl. Pl aySyst enound 2

: Ends the download sequence.
PBrickCtrl.EndOf Sub

Page 43 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

EndOfSubNoDownload()

O Downloadable Command
M Immediate Command

This command is used to gain info about the compiled and downloadable subroutine in advance of
the real download.

If the amount of free RAM in the PBrick is small, the user can check for needed space by using this
command and the MemMap command, see page 28 for information about MemMap.

Part: Description:

Return value: Short type. If the startup of this command, i.e. the compiler and download
started OK, the returned value = 1. Any error in the compile- and download
thread will result in areturn value of 0.

Further inforeturned in:

DownloadStatus: The user will receive info about the subroutine size (compiled), estimated
download time and subroutine number in this event.

Example 1: (The download function)
Storage for memory info
PBrickCtrl.Begi nOfSub 1 Initialises download to subroutine 1

L Ends the pseudo-download and get the block
PBrickCrl. EndQar SubNoDownl oad size etc. in the DownloadStatus event.

Example 2: (The download info returned in the DownloadStatus event)
PBri ckCrl _Downl oadSt at us (ByVal Downl oadTi nel nM5 As Long,

ByVal sizelnBytes As Long,
ByVal taskNo As Integer)

Label 1. Capti on = Downl oadTi el n\vV5 Expected download time.
Label 2. Capti on = sizel nBytes Size of the compiled subroutine in bytes.
Label 3. Caption = taskNo Number of the subroutine.

November 1998 Page 44 of 110

Spirit.0CX

30)
. Technical Reference

M CyberMaster Command
M RCX Command

Poll(Source, Number)

O Downloadable Command
M Immediate Command

This command is used to retrieve information/status from the PBrick. E.g. Variables, Timers, Input
information, Motor status etc.

Part: Description:
Source, Source and Number is used to address what to ‘Poll’.
Number: See ranges in the ParameterTable on page 9.
Source: | Number: Description:
0 0-31 Variable 0-31.
1 0-3 Timer 0-3.
2 - -
3 0,12 Motor status. The information is packed:
Bit 7: ON/OFF 1/0
Bit 6: Brake/Float 1/0
Bit 5: Output no. HiBit
Bit 4: Output no. LoBit
Bit 3: Direction CW/CCW 1/0
Bit 2: PowerLevel Most significant bit
Bit 1: PowerLevel
Bit 0: PowerLevel Least significant bit
4 - -
5 0,1 CyberMaster. TachoCounts. The Tacho value is approx. 50 counts per revolution of the
shaft.
6 0,1 CyberMaster. Tacho Speed. Normally a value between 0 and 90 [relative proportional
valug].
7 2 CyberMaster. MotorCurrent [milli amps, approx. value], only valid for the external
motor 2.
8 - RCX. Program No. |.e. Actua program selected.
9 0,1,2 SensorVaue. Value measured at an input. Depends on the actual mode of operation.
10 0,1,2 SensorType. Tells what type of sensor the input is set-up for.
11 0,1,2 SensorMode. Tells what mode the input is set-up for.
12 0,1,2 RCX. SensorRaw i.e. the analogue value measured at the input.
13 0,1,2 RCX. SensorBoolean. Returns the Boolean state of the input.
14 0 RCX. Watch. Integer where MSB = hours and LSB = minutes.
15 0 RCX. Returns the PBMessage stored internally in the RCX.
16 - CyberMaster. The AGC (automatic gain control) Voltage from the CyberMaster Base Unit
[in millivolt].
Return value: The return value is the data/status asked for (16 bit signed Integer).

Page 45 of 110

If the PBrick is not accessible (e.g. Turned off) an error will be issued. The
user application should have an error handler, e.g. Visua Basic On Error
Goto <IbIMyErrorHandler>.

November 1998

Spirit.0CX

Technical Reference

Example:
Label 1. Capti on

Label 2. Capti on

Label 3. Capti on

November 1998

PBrickCrl. Poll

PBrickCrl. Poll

PBrickCtrl . Pol |

0, 7

7, 2

16, O

Label 1 will be set equal to variable 7 of the
PBrick.

Label2 will be set equal to the
MotorCurrent of the external attached
motor (CyberMaster Base unit only).

Label 3 will be set equal to the AGC level in

the receiver part of the CyberMaster Base
unit.

Page 46 of 110

(EGO)
Spirit.OCX . Technical Reference

[0 CyberMaster Command
M RCX Command

SelectPrgm(Number)

O Downloadable Command
M Immediate Command

Selects the active program. Used for changing active program.

This command acts like pressing the SelectPrgm button on the PBrick (RCX only).

Part: Description:

Number: Program number to switch to (0-4).
See ParameterTable for ranges, page 10

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCirl. SelectPrgm3 | Selects program 4 (display shows 1-5 for program 0-4)

Page 47 of 110 November 1998

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

StartTask(Number)

M Downloadable Command
M Immediate Command

Starts execution of PBrick’s task [Number]. Tasks always start from the beginning of the task (i.e.
the very first program line in the task). If the task [Number] was aready running, it is stopped and
then restarted (from the very first program line in the task).

If no task was running before issuing this command:

RCX: CyberMaster:
The little man in the display on the PBrick The Run-LED will change from flashing
will start running. green to steady yellow.
Part: Description:
Number: The task to be started.

See Parameter Table for range, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCirl.Start Task 2 | Task 2 (re)started and is now running.

November 1998 Page 48 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

StopTask(Number)

M Downloadable Command
M Immediate Command

Stops execution of PBrick’stask [Number]. If all tasks are stopped:

RCX: CyberMaster:
The little man in the display on the PBrick The yellow Run-LED will switch to steady
will stop running. green (i.e. OFF).
Part: Description:
Number: The task to be stopped.

See Parameter Table for range, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCirl. StopTask 2 | Task 2 stopped.

Page 49 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

StopAllTasks()

M Downloadable Command
M Immediate Command

Stops execution of all the PBrick’s Tasks.

RCX: CyberMaster:
The little man in the display on the PBrick The Run-LED will switch off (from
will stop running. yellow to green).
Part: Description:
Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

Label 1. Caption = PBrickCirl. StopAll Tasks All tasks stopped ("Emergency stop")
If PBrick in range and the command
received and carried out - the text shown
in Label1 will display TRUE, if not
successful the text will be FALSE.

November 1998 Page 50 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

DeleteTask(Number)

O Downloadable Command
M Immediate Command

Deletes the addressed task [Number] in the selected program in the PBrick (If the task is running, it
is stopped first). If it was the only running task:

RCX: CyberMaster:
The little man in the display on the PBrick The Run-LED will switch off (yellow to
will stop running. solid green).
Part: Description:
Number: Address of task to be deleted.

See ParameterTable for range, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FALSE.

Example:
Label 1. Caption = PBrickCtrl. Del eteTask 3 If thetask 3 isdeleted OK, the Label1 will

hold the text TRUE. If no success the
Label1 will hold the text FALSE.

Page 51 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

DeleteAllTasks()

O Downloadable Command
M Immediate Command

Deletes al tasks of the currently selected program:

RCX: CyberMaster:
The little man in the display on the PBrick All tasks are deleted and the Run-LED
will stop running. will switch off (yellow to green).
Part: Description:
Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:
PBrickCirl. Sel ectPrgm 2 Select program 2 in the RCX Pbrick
PBrickCirl. Del et eAl | Tasks Erase al tasksin program 2.

November 1998 Page 52 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

DeleteSub(Number)

O Downloadable Command
M Immediate Command

Deletes the content of Subroutine [Number].
Any task curently using this subroutine, will automatically be stopped.

Part: Description:

Number: The Subroutine to be deleted.
See Parameter Table for range, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FAL SE.

Example:
In this program task 2 uses Subroutine 2, 3 and 4 task 3

uses Subroutine 2 and 4

PBrickCtrl.Del eteSub 3 Subroutine 3 is deleted and task 2 is stopped. Task 3

continues running.

Page 53 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

DeleteAllSubs()

O Downloadable Command
M Immediate Command

Deletes the content of all Subroutines in the currently selected program (In CyberMaster all
Subroutines).
All tasks for the selected program currently using subroutines are automatically stopped.

Part: Description:

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.Del et eAl | Subs | All the memory space for subroutinesis cleared.

November 1998 Page 54 of 110

Spirit.0CX

30)
. Technical Reference

On(MotorList)

M CyberMaster Command
M RCX Command

M Downloadable Command
M Immediate Command

Starts the motorsin the list. All other properties for the motors are not affected (Power, Direction,

etc.).

All motors (in MotorList) are started simultaneously.

Part: Description:

MotorList: An ASCII string containing the names of motors to be started.
Valid names; ‘0’, ‘1" and ‘2. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Outputl etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

Example:

PBrickCtrl.On “02" | Motor 0 and motor 2 are set on (started).

Page 55 of 110

November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

Off(MotorList)

M Downloadable Command
M Immediate Command

This command stops the motors in the MotorList. The outputs are turned off in brake mode. All
other properties for the motors are not affected (Power, Direction etc.).

All motors (in MotorList) are stopped simultaneously.

Part: Description:

MotorList: An ASCII string containing the names of motors to be started.
Valid names; ‘0’, ‘1" and ‘2. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Outputl etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.OFf “12” | Motor 1 and Motor 2 are stopped in brake mode.

November 1998 Page 56 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

Float(MotorList)

M Downloadable Command
M Immediate Command

This command turns the motor(s) in the list off in float mode i.e. the motors are stopped in afree
running mode. All other properties for the motors are not affected (Power, Direction etc.).

All motors (in MotorList) are stopped simultaneously.

Part: Description:
MotorList: An ASCII string containing the names of motors to be stopped in floating
mode.

Valid names; ‘0’, ‘1’ and ‘2. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Outputl etc.

See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.Float “02 | The motors 0 and 2 are stopped in float mode,

Page 57 of 110 November 1998

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

SetFwd(MotorList)

M Downloadable Command
M Immediate Command

This command sets the Direction property for the motor(s) in the list. All other properties for the
motors are not affected (Power, On/Off etc.).

Direction for all motors (in MotorList) are changed simultaneously.

Part: Description:

MotorList: An ASCII string containing the names of motors whose Direction Property
should be set to Forward.
Valid names; ‘0’, ‘1’ and ‘2. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Outputl etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl. Set Fwd “0” | The direction of Motor 0 is set to forward.

November 1998 Page 58 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

SetRwd(MotorList)

M Downloadable Command
M Immediate Command

This command sets the Direction property for the motor(s) in the list. All other properties for the
motors are not affected (Power, On/Off etc.).

Direction for all motors (in MotorList) are changed simultaneously.

Part: Description:

MotorList: An ASCII string containing the names of motors which should have their
direction set to Reverse.
Valid names; ‘0’, ‘1’ and ‘2. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Outputl etc.
See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.SetRnd “0” The Motor O'sdirection is set to reverse
direction.

Page 59 of 110 November 1998

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

AlterDir(MotorList)

M Downloadable Command
M Immediate Command

This command alters the Direction property for the motor(s) in the list. All other properties for the
motors are not affected (Power, On/Off, etc.).

Direction for all motors (in MotorList) are changed simultaneously.

Part: Description:
MotorList: An ASCII string containing the names of motors whose direction should be
altered.

Valid names; ‘0’, ‘1" and ‘2. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Outputl etc.

See ParameterTable for ranges, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FALSE.

Example: Motor 1 is running in forward direction.
PBrickCrl.AlterDir “1” The direction of Motor 1 is atered.

Now Motor 1 isrunning in the other direction.

November 1998 Page 60 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

SetPower(MotorList, Source, Number)

M Downloadable Command
M Immediate Command

Sets the Power property for the motor(s) in the MotorList. All other properties for the motors are
not affected (On/Off, Direction etc.).

Power for al motors (in MotorList) are changed simultaneously.

Part: Description:

MotorList: An ASCII string containing the names of motors to be started.
Valid names; ‘0’, ‘1" and ‘2. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Outputl etc.
See ParameterTable for ranges, page 9.

Source, Addresses the type and number of the source for the power level
Number: setting. See ParameterTable for ranges, page 9.
Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCirl. Set Power(“012”, 0, 15) The power of Motor 0, 1 and 2 is set to the
power level stored in Variable 15.

Page 61 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
O RCX Command
Drive(NumberO, Numberl)

O Downloadable Command
M Immediate Command

This command sets all the properties for both motor 0, and motor 1.
This command is useful when fast updating of the driving motors is needed. E.g. when controlling
the PBrick directly by ajoystick.

(The same function could have been achieved by sending these commands:
On/off+SetPower+SetFwd/SetRwd).

Part: Description:
NumberO, Data for motor O (Ieft motor) and motor 1 (right motor).
Numberl: Negative numbers means Rwd, positive numbers means Fwd.

Zero means stop (in brake mode).
See Parameter Table for ranges, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCrl.Drive(-7, 7)) The left motor set on, full speed and backwards. The right
motor set on, full and forward, i.e. the model turns on the
spot.

November 1998 Page 62 of 110

Spirit.0CX

30)
. Technical Reference

M CyberMaster Command
O RCX Command

OnWait(Motorlist, Number, Time)

M Downloadable Command
O Immediate Command

This command is used to start one or more motor(s) with a specified power level and then wait for a
specified time. When the wait time is finished, the user application decides what to do next
(continue or stop etc.).

If the command is used with atime setting of O, the command will act asanormal ON, but with an
additional power level/direction specified.

Part: Description:
Motorlist: An ASCII string containing the names of motors to be started.
Valid names: ‘0, ‘1" and ‘2'. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Outputl etc.
Number: Negative “Number” means reverse direction, positive “Number” means
forward direction..
Zero means stop (in brake mode).
Time: The wait “Time” can be set to 0- 255, the timeisin counts of 100ms. (l.e. 0
to 25.5 sec.). A zero (0) means no wait (i.e. the command acts as a normal
On/Off command).
See Parameter Table for ranges, page 9.
Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.
Example:
PBrickCrl.OnWait “12", -3, 25 Motor 1 and 2 On, Reverse direction, Power Level 3 and
Wait 2.5 sec.
PBrickCrl.OnVait “12", 5, 0 Command used as an On command with additional power
Setting.

Page 63 of 110

November 1998

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
O RCX Command

OnWaitDifferent(Motorlist, NumberO, Numberl, Number2, Time)

M Downloadable Command
O Immediate Command

This command is used to start more motors with different power levels/directions and then wait for
a specified time. When the wait time is finished, the user application decides what to do next
(continue or stop etc.).

If the command is used with atime setting of O, the command will act asanormal ON, but with an
additional power level/direction specified.

Part: Description:

Motorlist: An ASCII string containing the names of motors to be started.
Valid names; ‘0’, ‘1’ and ‘2. But the ActiveX control will search the string
and remove other characters, so more readable names can be used: E.g.
Motor2, Outputl etc.

NumberO, Numberl,

Number2: Negative “NumberX” means reverse direction, positive “NumberX”
Means forward direction..
Zero means stop (in brake mode).

Time: The wait “Time” can be set to 0- 255, the timeisin counts of 100ms (i.e. 0 to
25.5 sec.) A zero (0) means no wait (i.e. the command acts as a normal
On/Off command).

See Parameter Table for ranges, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.OnWaitDifferent “012", -3, 3, -7, 25 Motor 0 On Power level 3 Reverse
direction.

Motor 1 On Power level 3 Forward
direction.

Motor 2 On Power level 7 Reverse
direction.

Wait 2.5 sec.

November 1998 Page 64 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
O RCX Command

ClearTachoCounter(MotorList)

M Downloadable Command
M Immediate Command

This command clears the TachoCounter. The TachoCounter is an integrated part of the 2 internal
motors.

Part: Description:

MotorList An ASCII string containing the names of motors to be started.
Valid names: ‘0" and ‘1’. But the ActiveX control will search the string and
remove other characters, so more readable names can be used: E.g. MotorO
etc.
See Parameter Table for ranges, page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.d ear TachoCounter “1" | Clearsthe Tachovalue of Motor 1.

Page 65 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
PlayTone(Frequency, Time)

M Downloadable Command
M Immediate Command

This command is used to make the PBrick play atone viathe interna speaker. The Frequency
parameter sets the pitch of the tone and the Time parameter sets the duration of the tone. The tones
will be buffered in the RCX, if more than one tone is sent.

Part: Description:

Frequency: Sets the frequency of the Tone. All integersin the range can be selected.
For range: See ParameterTable page 10.

To help those who wants to play ‘music’, there is a table below containing
the frequencies for the notes in eight octaves. The frequencies are rounded to
integers. (C4 isthe middle C).

PITCH |1 2 3 4 5 6 7 8
G# 52 [104 | 208 | 415 |[831 |1661 | 3322
G 49 |98 196 | 392 | 784 | 1568 | 3136
F# 46 |92 185 | 370 | 740 | 1480 | 2960
F 44 | 87 175 | 349 | 698 | 1397 | 2794
E 41 |82 165 | 330 | 659 |1319 | 2637
D# 39 |78 156 | 311 | 622 | 1245 | 2489
D 37 |73 147 | 294 | 587 | 1175 | 2349
C# 35 | 69 139 | 277 | 554 | 1109 | 2217
C 33 [65 131 | 262 | 523 | 1047 | 2093 | 4186
B 31 |62 123 | 247 | 494 | 988 1976 | 3951
A# 29 |58 117 | 233 | 466 | 932 1865 | 3729
A 28 |55 110 | 220 | 440 | 880 1760 | 3520
Time: The duration of the Tone, in 10ms steps.
For range: See ParameterTable page 10.
Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.
Example:
PBrickCrl.PlayTone 2000, 100 | Plays 2000 Hz. for aduration of 1 sec.

November 1998 Page 66 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
PlaySystemSound(Number)

M Downloadable Command
M Immediate Command

This command is used to make the RCX play one of 6 pre-defined sound patterns. The sounds will
be buffered in the RCX, if more than one is sent.

Part: Description:

Number: Number addresses the sound to play.
Below is a short description of the predefined sound patterns, and some
guidelines for using them:

Number | Sound Purpose

0 ‘Key click’ Used by default when akey is pressed.

1 ‘Beep beep’ Normally used as an ‘acknowledge' .

2 Decreasing Used to indicate end of successful
frequency sweep | download.

3 Increasing Used by default to indicate end of
frequency sweep | successful upload (e.g. Datalog)

4 ‘Buhhh’ Error sound

5 Fast increasing Used three times in arow to indicate:
sweep “Hurrah sound’

Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCtrl . Pl aySyst enSound 4 | Audibly flag an error

Page 67 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

[0 CyberMaster Command
M RCX Command

SetSensorType(Number, Type)

M Downloadable Command
M Immediate Command

This command is used to specify the SensorType for an input. The Type information (and
SensorMode) tells the RCX how to use and represent Sensor data.
For information about SetSensorMode see page 69. See also the ‘ Inputs on page 100.

Part: Description:
Number: Addresses the input port for which the Type has to be set.
Type: Specifies the SensorType:
0: None
1 Switch
2: Temperature
3: Reflection (Light sensor)
4: Angle
Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCtrl. Set Sensor Type 0, 4 | Input O setup for using an Angle sensor.

November 1998 Page 68 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
SetSensorMode(Number, Mode, Slope)

M Downloadable Command
M Immediate Command

This command sets the SensorMode of the input. The analogue values can be represented and
calibrated in different pre-defined values. The digital representation can also be set to different
modes. By adding dynamic measurements, the user can apply a sort of “High Pass’-filter. The
change on the input shall have a certain minimum dVoltage/dTime. The mode information works
closely together with the SensorType setting.

For information about SetSensorType see page 68. See also the ‘Inputs on page 100.

Part: Description:
Number: The input for which the Mode has to be set.
Mode: The sensor mode:
0: Raw Raw analogue data (0-1023)
1 Boolean TRUE/FALSE
2: Transition Counter All transitions are counted (both positive
and negative transitions are counted).
3: Periodic Counter ~ Only counting whole periods (one
negative edge + a positive edge — or ‘vice
Versa).
4: Per cent Sensor value represented in percent of
full scale.
5: Celsius M easurement represented in Celsius.
6: Fahrenheit M easurement represented in Fahrenheit.
7 Angle Input data counted as Angle steps.
Slope: If Boolean mode of operation is selected, Slope indicates how to determine

TRUE and FALSE in SensorValue. This aso affects the way counters reacts
on input changes.

0: Absolute measurement (below 45% of full scale = TRUE, above 55%
of full scale = FALSE). i.e. apushed switch (low voltage measured)
resultsin a TRUE state.

1-31: Dynamic measurement. The number indicates the size of the dynamic
slope.
|.e. the necessary change of bit-counts between two samples, to
get a change in the Boolean state.

Page 69 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:
PBrickCtrl. Set Sensor Type 1, 1 The sensor at input 1 is set as a switch
PBrickCtrl.Set SensorMde 1, 1, O The switch data should be represented as boolean

and an absolute value.

November 1998 Page 70 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

ClearSensorValue(Number)

M Downloadable Command
M Immediate Command

This command clears the sensor value register. (On the RCX: The sensor value register holds the
value which is shown in the display).

Part: Description:

Number: Addresses the input whose input value register should be cleared.
See ParameterList for ranges on page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

An angle sensor is connected to input 1 of an RCX. The
angle sensor is turned 360 degrees 3 times and the display
shows 48 (3* 16) steps.

PBrickCrl.d earSensorVal ue 1 | Clear the sensor value register for input 1 (1.e. the middle
one labelled 2 on the RCX).

Now the display on the RCX shows an angle sensor reading
of zero (0).

Page 71 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
ClearTimer(Number)

M Downloadable Command
M Immediate Command

This command clears one of the four free-running Timers. The Number parameter indicates which
timer to clear. After this command is executed, the timer is set to zero (0), and the timer is restarted.

Part: Description:

Number: Indicates which timer to clear.
For information about ranges see Parameter Table on page 9.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCirl.C earTiner 2 | Clears Timer 2 and retartsit.

November 1998 Page 72 of 110

Spirit.0CX

30)
. Technical Reference

GoSub(Number)

M CyberMaster Command
M RCX Command

M Downloadable Command
O Immediate Command

This command is only for download. A subroutine cannot call another subroutine since the PBrick
has no call stack, but only a single return pointer. If the subroutine does not exist the call isignored.
For information about how to download a subroutine see the function BeginOfSub on page 42.

Part: Description:

Number: Addresses the subroutine to call.
For information about range etc. see ParameterTable on page 10.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.Begi nOF Sub 1
PBrickCtrl. Pl aySystentound 2
PBrickCtrl.On “12"

PBrickCtrl.EndOf Sub

PBrickCirl . Begi nOf Task O
PBrickCirl.GoSub 1

PBrickCtrl.GoSub 1
PBrickCrl.EndO Task

Page 73 of 110

Starts Subroutine 1

Makes PBrick play SystemSound 2
Starts motors at output 1 and 2
Ends Subroutine 1 declaration

Starts definition of Task O
1st call of Subroutine 1

2nd call of Sub 1
End of Task O

November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

Loop(Source, Number)

M Downloadable Command
O Immediate Command

This command is part on the Loop...EndLoop control structure.

Program lines between Loop and EndLoop will be repeated as many times as the Source/Number
states at runtime.

However, there is an exception to thisrule: A Loop 2, 0 statement means infinite loop.

If aLoop zero (0) is set-up via avariable or arandom number at runtime, the Loop-EndL oop
structure will be entirely skipped, so the execution will not end in adeadlock if the source becomes

zero (0).
Part: Description:
Source, Addresses and type for the source of the loop value.
Number: See ParameterTable on page 9 for information about range.
Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.
Example 1:
PBrickCtrl.Loop O, 3 Get the Loop count from variable 3
If variable 3 is zero (0) when the Loop 0O, 3 statement is entered first
time, this line and the following lines are skipped.
If variable 3 was 2, when the Loop 0, 3 was entered first time, these
lines are executed 2 times.
PBrickCtrl.EndLoop
Example 2:
PBrickCtrl.Loop 2, O Loop Forever
PB-r-i -ckCt rl . EndLoop

November 1998

Page 74 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

EndLoop()

M Downloadable Command
O Immediate Command

This command terminates the Loop...EndL oop control structure. For information about L oop see
page 74).

The EndL oop causes the loop count to be decremented and tested. If the loop count has not reached
zero (0), the program-execution is repeated again from the corresponding L oop statement.

If aLoop 2, 0isused, the EndLoop acts as a normal unconditional jump back to the beginning of
theloop (i.e. loop forever).

Part: Description:

Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.

Example:
PBrickCtrl.Loop 2, O Loop forever.
PB-r-i -ckCt r1 . EndLoop Jumps back to loop start and do it “forever”.

Page 75 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

While(Sourcel, Numberl, RelOp, Source2, Number2)

M Downloadable Command
O Immediate Command

This command is a part of the While...EndWhile control structure.

The program lines located between the While and EndWhile statement will be executed as long as
the Condition described by parameters evaluates TRUE.

The two values tested are addressed by Sourcel/Numberl and Source2/Number2.

Part: Description:

Sourcel, Addresses the first CompareValue.

Numberl: Check the ParameterTable on page 9 for types and ranges.

RelOp: This specifies the relational operator used for the compare of the two
CompareVaues.

Relation Constant
Operator: equivalent:

> 0
< 1
= 2
<> 3
Source2, Addresses the second CompareValue.
Number2:
See Parameter Table on page 9 for information about types and ranges.
Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.
Example:
PBrickCrl.Setvar 5, 2, O Setsvariable5=0
PBrickCtrl.Wiile O, 5 1, 2, 10 While variable 5 < (constant) 10
PBrickCirl.PlayTone 1000, 10 Plays a 1000Hz tone for a 100ms.
PBrickCtrl.Wait 100 Waits 1 sec.
PBrickCtrl.Sunvar 5, 2, 1 Increment variable 5 by 1.
PBrickCtrl.EndWhile Ends the While...EndWhile control structure.
Thetoneis played 10 times, with a 1 sec.
interval.

November 1998 Page 76 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

EndWhile()

M Downloadable Command
O Immediate Command

This command terminates the While...EndWhile control structure.
For further information see the While statement on page 76.

Part: Description:

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return valueis FAL SE.

Example:

PBrickCtrl.Wile 0, 0, 0, 2, 3 While variable 0 > (constant) 3

PBri ckCtrl . Endwil e

Page 77 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
If(Sourcel, Numberl, RelOp, Source2, Number2)

M Downloadable Command
O Immediate Command

This command is apart of thelf...[Elsg]...EndIf control structure.

The program lines located between the If and EndIf statements will be executed if the condition
described by the parameters evaluates to TRUE.

If an Else block exists, this block will be executed if the If-statement evaluates to FALSE.

The two tested values are addressed by Sourcel/Numberl and Source2/Number2.

Part: Description:

Sourcel, Addresses the source and type of the first compare value for the

Numberl: Compare. See the ParameterTable on page 9 for ranges and type.

RelOp: This specifies the relational operator used for the compare of the two
Compare values.

Relation Constant
Operator: equivalent:

> 0
< 1
= 2
<> 3
Source2, Addresses the source and the type for the second compare value.
Number2:
See Parameter Table on page 9 for ranges and type.
Return value: If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE.
Example:
PBrickCrl.If O, 5 1, 2, 10 If variable 5 < (constant)10 then
PBrickCirl.PlayTone 1000, 10 play a 1000 Hz tone for 100ms.
PBrickCtrl.Endlf() Close the conditional If...EndIf control structure.
PBrickCrl.If O, 5 1, 2, 8 If variable 5 < (constant) 8 then
PBrickCirl.PlayTone 1000, 10 play a 1000 Hz tone for 100ms.
PBrickCtrl.El se Start of the Else part
PBrickCtrl.PBTurnOf Else If variable 5 >= 8 then turn the PBrick OFF
PBrickCtrl. Endlf Closethe If...Else...EndIf control structure.

November 1998 Page 78 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

Else()

M Downloadable Command
O Immediate Command

This command is part of the If...Else...EndIf control-structure.
See the If command on page 78 for further information.

Part: Description:

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:
PBrickCrl.If 2, 5 2, 0, 15 If (constant) 5 = variable 15 then
PBrickCirl.PlayTone 440, 20 play a 440 Hz tone for 200 ms.
PBrickCirl. El se Else
PBrickCirl.PlayTone 5000, 10 play a 5000 Hz. tone with a 100 ms. duration
PBrickCirl. Endlf Close the If...Else...EndIf control-structure.

Page 79 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

EndIf()

M Downloadable Command
O Immediate Command

This command is part of the If...[Else]...EndIf control structure. It closes the conditional control
structure.
For more information about the If statement see page 78.

Part: Description:

Return value: If the command/function succeeds, the return value is TRUE.
If the command/function fails, the return value is FALSE.

Example:

PBrickCrl.If O, O, 1, 0, 2 If variable O < variable 2 then
PBrickCrl.On “01” Turns motor 0 and motor 1 ON

PBrickCQrl . Endlf Closes the conditional part of program execution

November 1998 Page 80 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

Wait(Source, Number)

M Downloadable Command
O Immediate Command

This command is used to stop the program execution. It is only execution in the calling task which
is suspended for some time. The program execution is exclusively handed over to the other tasks.

Part: Description:
Source, Addresses the source and the type for the waiting time [10 ms.
Number: resolution].
See the ParameterTable on page 9 for information about for ranges
and type.
Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:
PBrickCtrl.On “1” Turns output 1 ON
PBrickCirl.Wait 2, 1000 Waits (suspend execution in this

task) for 10 Sec.

Page 81 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
SetVar(VarNo, Source, Number)

M Downloadable Command
M Immediate Command

Setsthe [VarNo] variable to the value addressed by the Source and Number parameters.

Part: Description:

VarNo: The variable number to be set.

Source, Addresses the type and the source of the new value for the variable.

Number: See the ParameterTable on page 9 for more information about range and
type.

Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCrl.SetVar 16, 2, 33 | Initialises Variable 16 with the constant value 33.

November 1998 Page 82 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
SumVar(VarNo, Source, Number)

M Downloadable Command
M Immediate Command

Adds the value addressed by Source and Number to the [VarNo] variable. Result is stored in the
[VarNo] variable.

Part: Description:

VarNo: The [VarNo] variable is both source of the value to be added and also
the destination for the result of the addition.

Source, This parameter addresses the source and type of the second source.

Number: See the ParameterTable on page 9 for information about ranges of

source and number.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCrl.Sunvar 0, 0, O | AddsVariable Otoitself (Variable0=2* Variable0).

Page 83 of 110 November 1998

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

SubVar(VarNo, Source, Number)

M Downloadable Command
M Immediate Command

Subtracts the value addressed by Source and Number from the [VarNo] variable.

Part: Description:

VarNo: The [VarNo] variable is both source of the value to be subtracted and also the
destination for the result of the subtraction.

Source, Addresses the value to subtract from the [VarNo] variable.
Number: See ParameterTable on page 9 for range.
Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.Subvar 0, 2, 1 | Decrements Variable 0 by 1

November 1998 Page 84 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
DivVar(VarNo, Source, Number)

M Downloadable Command
M Immediate Command

Dividesthe [VarNo] variable with the value addressed by Source and Number. The result of the
division is stored in the [VarNQ] variable.

The result is always rounded down to the nearest integer.

If the division resultsin a*“divide by zero”, the result of the operation is defined and set to zero (0).

Part: Description:

VarNo: The [VarNo] variable is both source of the value to be divided and also
the destination for the result of the division.

Source, Addresses the divisor.

Number: See ParameterTable on page 9 for ranges.

Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCrl.Divvar 0, 2, 3 Divides Variable O by 3. If Variable O is holding the value of 5
then the result will be 1 (always rounded down).

Page 85 of 110 November 1998

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
MulVar(VarNo, Source, Number)

M Downloadable Command
M Immediate Command

Multiplies the [VarNo] variable with the value addressed by Source and Number. The result of the
multiplication is stored in the [VarNo] variable.

If the result is bigger than a signed 16 bit integer, the result is rounded to lie within the interval:
-32768 or 32767.

Part: Description:

VarNo: The [VarNo] variableis both source of the value to be multiplied and also the
destination for the result of the multiplication.

Source, Addresses the value to multiply with the [VarNo] variable.

Number: See ParameterTable on page 9 for ranges.

Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.MilVar 2, 2, 8 | Multiplies Variable 2 by a constant of 8.

November 1998 Page 86 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
SgnVar(VarNo, Source, Number)

M Downloadable Command
M Immediate Command

Stores the result of the test of the value addressed by Source and Number in the [VarNo] variable.

If the addressed value > 0 then [VarNo] variableis set to 1.
If the addressed value = 0 then [VarNo] variableis set to 0.
If the addressed value < O then [VarNo] variableis set to -1.

Part: Description:

VarNo: Addresses the [VarNo] variable to hold the result of the sign test.
Source, Addresses the source for the sign test.

Number: See ParameterTable on page 10 for ranges.

Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:
PBrickCrl.Sgnvar 0, 0, 12 If variable 12 = -24 then Variable O isset to -1

If variable 12 = Othen VariableOissetto O
If variable 12 = 2255 then Variable O isset to 1

Page 87 of 110 November 1998

(EGO)
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

AbsVar(VarNo, Source, Number)

M Downloadable Command
M Immediate Command

Stores the absolute value of the value addressed by Source and Number in the [VarNo] variable.

Part: Description:

VarNo: The [VarNo] variable used as destination for the result.

Source, Addresses the source and type for the requested value, from which the
Number: Abs-value should be evaluated.

Look in the ParameterTable on page 9 for range.

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.AbsVar 2, 0, 7 | Ifvariable7is -33 then variable 2 is set to 33 (Abs of -33)

November 1998 Page 88 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

AndVar(VarNo, Source, Number)

M Downloadable Command
M Immediate Command

Performs a bitwise AND operation between [VarNo] variable and the value addressed by Source
and Number. The result is stored in the [VarNo] variable.

Part: Description:

VarNo: The [VarNo] variable is both source of the value to be AND’ ed and also the
destination for the result of the AND operation.

Source, Addresses the source and type of the second source for the AND.

Number: See the ParameterTable on page 10 for ranges.

Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCtrl.Andvar 0, 2, 7 If Variable 0 holds the value 17 decimal (10001
binary) then this command line will put the value
linto Variable 0.

Page 89 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command
OrVar(VarNo, Source, Number)

M Downloadable Command
M Immediate Command

Performs a bitwise OR operation between [VarNo] variable and the value addressed by Source and
Number. The result is stored in the [VarNo] variable.

Part: Description:

VarNo: The [VarNo] variable is both source of the value to be OR’ ed and also the
destination for the result of the OR operation.

Source, Addresses the source and type for the bitwise OR operation.

Number: See the ParameterTable on page 9 for ranges.

Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:

PBrickCrl.OVar 5, 2, 1 If Variable 5 is set to 4 (100 binary)
then this command will fill 5into Variable 5 (101 binary).

November 1998 Page 90 of 110

(EGO) .
Spirit.OCX . Technical Reference

[0 CyberMaster Command
M RCX Command
SetDatalog(Size)

O Downloadable Command
M Immediate Command

Allocates the datalog area. A previous allocated datalog area is automatically erased. Each element
of adatalog allocates 3 bytes in the PBrick. The datalog area ranges from 1 to Size. The element 0
of the datalog area (can be accessed by the UploadDatalog(O, 1)) always reflects the maximum
available datalog area [Size].

Part: Description:

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:

PBri ckCtrl. Set Dat al og 50 | Initialises a datalog area of 50 elements.

Page 91 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

O CyberMaster Command
M RCX Command
DatalogNext(Source, Number)

M Downloadable Command
M Immediate Command

This command forces a new sample of the value addressed by the Source and Number. The PBrick
automatically increments itsinternal datalog pointer. If the end of the datalog area is reached,
nothing happens. |.e. the Datalog area is not overwritten by automatic “wrap around”.

The user can use a counter in the RCX and use SetDatalog(Size) from a PC program monitoring
the counter to make a pseudo wrap around.

Part: Description:
Source, Number: Value to log: Source: | Number:
Var0-31 0 0-31
Timer0-3 1 0-3
Input(Sengeralue) 0 = 2 9 0 = 2
Watch 14 0
Return value: If the function succeeds, the return valueis TRUE.

If the function fails, the return value is FAL SE.

Example:

Asynchronous datalog. The individual samples are time
stamped.

PBrickCirl. Datal ogNext 14, O | Timestamp

PBrickCtrl. Datal ogNext 9, 1 Datalog sensor 1

PBrickCtrl. Datal ogNext 9, O Synchronous datalog. E.g. the sampling forced by atimer or
another trigger.

November 1998 Page 92 of 110

Spirit.OCX

Technical Reference

[0 CyberMaster Command
M RCX Command

UploadDatalog(From, Size)

O Downloadable Command
M Immediate Command

This command is used for getting the logged data from the RCX. The start and size of the uploaded
datalog is defined in From and Size. For information about SetDatalog see page 91.

Part: Description:

From: Addresses the start point for the upload.

Size: Defines the size of the upload.

Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Example:

Private Sub Commandl _C i ck()
Dmarr As Variant
Dmi As |nteger
Dmfrom As |nteger
Di m dat al engt h As | nt eger

from = Val (Text 1. Text)
dat al ength = Val (Text 2. Text)

arr = PBrickCrl. Upl oadDat al og(from Dat al engt h)
If IsArray(arr) Then
For i = LBound(arr, 2) To UBound(arr, 2)
Listl. Addltem "Type: " + Str(arr(0, i)) +
" No. " + Str(arr(1, i)) +
Value: " + Str(arr(2, i))
Next |
El se
MsgBox “Upl oad NOT a valid array”

End |f
End Sub

Page 93 of 110

Variant array-type

Array index stepper

“Pointer” to first wanted element
Size of upload

User request of starting point
Size of requested upload

Perform the Upload
Check for avalid array (variant)
Iterate over the whole array

Display the uploaded data in the
Listbox

“Listl”:

Type: X No.y Vaue zzzz
Continue until all elements are
displayed

If arr not avalid array

Some debug info

End of upload

November 1998

(EGO) .
Spirit.OCX . Technical Reference

[0 CyberMaster Command
M RCX Command
SendPBMessage(Source, Number)

M Downloadable Command
O Immediate Command

This command makes the PBrick transmit a message on the |R-communication channel.

The command enables two PBrick’s to communicate/interact with each other, without any link to a
PC. It isnot possible to use this command and having a PC communicating with the PBrick
simultaneoudly. Thisis due to the IR-channel being common to both sorts of communication.

Part: Description:

Source, Addresses the type and source for use as message.
Number: For ranges see Parameter Table on page 9.

Return value: If the function succeeds, the return value is TRUE.

If the function fails, the return value is FAL SE.

Example:
PBrickCirl. Begi nOf Task 2
PBrickCrl.If 0, 2, 2, 2, 55 If Variable 2 =55
PBrickCrl.SendPBMessage 0, 10 then send the PBrick message stored in
PBrickCtrl. Endlf Variable 10 to the other PBrick.

PBrickCtrl.EndO Task

November 1998 Page 94 of 110

(EGO) .
Spirit.OCX . Technical Reference

[0 CyberMaster Command
M RCX Command

ClearPBMessage()

M Downloadable Command
O Immediate Command

Clears the PBrick message stored internaly in the PBrick.

Part: Description:

Return value: If the function succeeds, the return valueis TRUE.
If the function fails, the return value is FAL SE.

Example:
PBrickCirl.Begi nOf Task 3

PBrickCtrl.C ear PBMessage Clears the PBrick message register.
PBrickCtrl.EndO Task

Page 95 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

[OLE Event]: VariableChange (Number, Value)

Thisisthe event sent from the ActiveX control when the addressed source has changed value.

By using this function the impact on the user application will be minimal, when constantly checking
resources in the PBrick.

Currently only changes of variable zero (0) can be polled thisway. The user can download tasks
which automatically update variable O with different data.

The source, type and address are set by the command SetEvent, see page 37.

Part: Description:
Number: The address of the autopolled and changed data.
Vaue The value of the autopolled and changed data.
Example:
Private Sub Commandl_ i ck()
Dim Src As Integer Type of source for the
event
Dim No As I nteger Address of the source
Dim Ti m As | nteger Autopoll time
Src = Val (Text 1. Text) User input for what to poll
No = Val (Text 2. Text) and how often.
Ti m = Val (Text 3. Text)
Label 1. Caption = PBrickCrl.SetEvent(Src, No, Tinm Setup the autopoll
End Sub
Private Sub PBrickCrl _Variabl eChange(ByVal Nunber As Integer,
ByVal Val ue As Integer)
Label 2. Capti on = Val ue Show the autopolled data
End Sub

November 1998 Page 96 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

[OLE Event]: DownloadDone (ErrorCode, TaskNo)

The DownloadDone event is sent from the ActiveX control as soon as the download is finished or
an error has terminated the download.

ErrrorCode is an error flag. The TaskNo addresses which tasknumber or subroutine number the
error flag refersto.

If the download is afirmware download (RCX only) the TaskNo will always contain the number
100.

Use the AsyncronBrickError event, if ErrorCode <> O (i.e. ErrorCode = 1), to get more information
about an error.

Part: Description:
ErrorCode: ErrorCode [name]: ErrorCode [number]:
RCX: CyberMaster:

OKDownload. 0x00 0x00
Download Failed. 0x01 0x01
The user should use the
AsyncronBrick error to get
more information.

The variable TaskNo can signal: Task numbers, sub numbers and firmware.

TaskNo.: RCX: CyberMaster:
Task: 00-09 | Task: 00-04
Sub: 10-17 | Sub: 10-13
Firmware: 100 | -

Example: (A TASK download)

Private Sub PBrickCtrl_Downl oadDone(ByVal ErrorCode As Integer,
ByVal TaskNo As | nteger)

If ErrorCode <> 0 Then If adownload error occurs 2 labels are set to values of
ErrorCode and TaskNo respectively.
Label 1. Caption = “Error in downl oad” Flag error.
El se
Label 1. Capti on = “Downl oad OK" Flags an OK download
End If
Label 2. Capti on = TaskNo Reports the download number (type)
End Sub

Page 97 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

[OLE Event]: DownloadStatus (timeInMS, sizelnBytes, taskNo)

This event is used to get an estimated download time, the size of the compiled code for download
and a reference to the task or sub. If an application only needs the time for a download and/or the
size of the task/sub, but not areal download, then the EndOf TaskNoDownload (or
EndOfSubNoDownload) should be used.

Part: Description:

TimelnM S Estimated download time without any retransmissions etc.
The valueis returned as a 32 bit integer Long.

sizelnBytes The size of the compiled task or subroutine.
The valueisreturned as aLong.

taskNo This number represents a reference to the task, sub or download of firmware.
The value is returned as an Integer.
TaskNo.: RCX: CyberMaster:
Task: 00-09 | Task: 00-04
Sub: 10-17 | Sub: 10-13
Firmware: 100 | -

Example:

Private Sub PBrickCrl _downl oadSt atus(ByVal tinmelnMs As Long,
ByVal sizelnBytes As Long,
ByVal taskNo As Integer)

Label 1. Caption = tinmelnhVs
Label 2. Capti on = sizel nBytes
Label 3. Caption = taskNo

End Sub

November 1998 Page 98 of 110

(EGO) .
Spirit.OCX . Technical Reference

M CyberMaster Command
M RCX Command

[OLE Event]: AsyncronBrickError (Number, Description)

This event is sent from the download thread viathe ActiveX control. If the DownloadDone event
returns an error code <> from zero (0), the application should use this event to get more
information. See appendix A, page 102 for more information about asynchronous error handling.

Part: Description:

Number: A number referring to a specific error. See appendix B on page 104
for more information about the error codes.

Description: A textual error message. These messages can e.g. be used by the
application as atext in a MessageBox. See appendix B, page 104 for more
information about these messages.

Example:

Private Sub PBrickCirl_AsyncronBri ckError(ByVal Number As I|nteger,
Description As String)
Label 1. Capti on = Nunber
Label 2. Capti on = Description
End Sub

Page 99 of 110 November 1998

(EGO) .
Spirit.OCX . Technical Reference

Inputs:
There are 3 inputs which are sampled by a 10bit A/D converter.

RCX: CyberMaster:
Inputs are able to source power for active Inputs are not able to source any power
sensors. The power sourcing is switched for active sensors.

on and off, depending on the type of
sensor attached to the inpuit.

Outputs:

There are 3 Outputs capable of sourcing 9V power for LEGO motors, bulbs etc.
Power can be controlled in 8 power levels. (See SetPower, page 61).

Immediate Control:

It is possible to control the PBrick without downloading any programs to it. These commands are
executed immediately and are called immediate commands. See OCX Overview page 8.

Tasks:

The PBrick provides a multitasking environment, making it possible to execute up to 10 tasks in
paralel (4 for CyberMaster).
All tasks have access to an interpreter, which executes the downloaded commands.

As soon as a program sequence is downloaded to one of the tasks, it is possible to start program
execution of that task (See StartTask, page 48).

Events:

It is possible to set-up the ActiveX control to automatically poll the PBrick for status on Variable 0,
and then generate an event if changes has occurred.
Thisis atime-optimised way of getting information of changes in the PBrick.

(See SetEvent, page 37).

November 1998 Page 100 of 110

Spirit.0CX

Technical Reference

Timers:

There are 4 free-running Timersin the PBrick, with aresolution of 100 ms. They can be cleared
individually. As soon as they are cleared they start running again (See ClearTimer, Page 72).

Variables:

There are 32 (Global) variables in the PBrick, defined as signed 16 bit integers within the interval:

-32768 to 32767.

Properties:

Set the PC's COM-port 1
or2

Set the LinkType.
InfraRed (RCX), Cable or
Radio (CyberMaster).

Set the PBrick to use
RCX PB or CyberMaster
PB.

Page 101 of 110

Froperties - PBrickChl

|PBrickcCtrl Spiric
Alphabetic | Categorized

(About)
(Cuskom)
PBricktrl

ComPorthMo 1-CoM1

Craglcon (Mone)

CragMode 0 - vbManual

Height 735

HelpContextID |0

Index

Left 1560

LinkTwpe 0 - InfraRed

PBrick. 1-RiCx

TabInde:x 0

TabSkop True

Tag

ToolTipText

Top 1200

Yisible True

WhatsThisHelpID |0

Width 1575
ii:Mamf_-}

Returns the name used in code to identify an

objeck.

November 1998

(EGO) .
Spirit.OCX . Technical Reference

Appendices

Appendix A:

Errorhandling while downloading code to the PBrick:

The DownloadDone event reports the result of the operation. If the ErrorCode returned by the DownloadDone event <>
zero (0) an error has occured.

To get information about this error, it is necessary to check the AsyncronBrickError event. But it isnot assimple asiit
appears. If the OCX (ActiveX) control sends an event and forces a dialog-box to be opened, all other events sent from
the ActiveX control to the Visual Basic application will disappear.

A possible workaround is outlined below:

1) A flag should be defined in the General/Declaration section:
Di m wai t For DD As Bool ean

2) In the Form_L oad event handler thisflag is set to false (i.e. initialised as “ not waiting”):
wai t For DD = Fal se

3) In the AsyncronBrickError event handler the application checks for the “waiting on a DownloadDone
event” i.e. check the waitForDD flag.
By doing so, the AsyncronBrickError event handler waits until the DownloadDone event has occurred and the
DownloadDone event handler has finished its job.
This means the two events are synchronised.

Private Sub PBrickCrl_AsyncronBrickError(ByVal Number As Integer,
Description As String)
I f (waitForDD) Then
VWil e (wait For DD)

DoEvent s
Wend
MsgBox "AsyncronBrickError: " + Str(Nunmber) + " " + Description
El se
MsgBox "AsyncronBrickError: " + Str(Nunmber) + " " + Description
End |f
End Sub

November 1998 Page 102 of 110

Spirit.0CX

Technical Reference

4) The DownloadDone event handler resets the synchronisation flag. |.e. it clears waitForDD.

Private Sub PBrickCrl _Downl oadDone(ByVal

Error Code As I nteger,

ByVal Downl oadNo As | nteger)
If ErrorCode = 0 Then
MsgBox " Downl oad Done and K" ok
El se
MsgBox " Downl oad Failed!"
End If
wai t For DD = Fal se
End Sub
5) In the application the synchronisation flag waitForDD should be set before any downloading takes place.
wai t ForDD = True Set the flag.

PBrickCtrl . Set Sensor Type 0, 2
PBrickCtrl.Set SensorMdde 0, 5, O

PBrickCirl.Begi nOf Task 1
PBrickCtrl.Loop 2, O
PBrickCtrl.Setvar 0, 9, O
PBrickCtrl.Wait 2, 90
PBrickCtrl.EndLoop
PBrickCtrl.EndOf Task

Page 103 of 110

Sensor 0 is atemperature and
configured to read Celsius

Begin task

End task. |.e. download the task.

November 1998

(EGO) .
Spirit.OCX . Technical Reference

Appendix B:

LEGOPBRICK ERRORCODES:

" UNKNOWN"

UNKNOWN = 2000
"FATAL"

FATAL = 2001
"PROGRAM_ERROR"

PROGRAM_ERROR = 2002
"PIPE_TO_THREAD_ERROR_SENDER"

PIPE_TO_THREAD_ERROR_SENDER = 2003
"PIPE_TO_THREAD_ERROR_RECEIVER"

PIPE TO_ THREAD_ERROR_RECEIVER = 2004
"TOO_MANY_RESENDS'

TOO_MANY_RESENDS = 2005

Download Thread, syntax errors

“SYNTAX_MATCHING_ENDIF_NOT_FOUND"

SYNTAX_MATCHING_ENDIF_NOT_FOUND = 2006
"SYNTAX_MATCHING_ENDWHILE_NOT_FOUND"

SYNTAX_MATCHING_ENDWHILE_NOT_FOUND = 2007
"SYNTAX_MATCHING_ENDLOOP_NOT_FOUND"

SYNTAX_MATCHING_ENDLOOP_NOT_FOUND = 2008
"SYNTAX_END_REACHED_TOO_SOON"

SYNTAX_END_REACHED_TOO_SOON = 2009
"SYNTAX_TO_MANY_NESTED LOOPS IN_TASK"

SYNTAX_TO_MANY_NESTED_LOOPS IN_TASK = 2010
"SYNTAX_TO_MANY_NESTED_LOOPS_IN_SUB"

SYNTAX_TO_MANY_NESTED_LOOPS IN_SUB =2011
"SYNTAX_ENDOFSUB_RECIEVED_ENDOFTASK_EXPECTED"

SYNTAX_ENDOFSUB_RECIEVED_ENDOFTASK_EXPECTED = 2012
"SYNTAX_ENDOFTASK_RECIEVED_ENDOFSUB_EXPECTED"

SYNTAX_ENDOFTASK_RECIEVED_ENDOFSUB_EXPECTED = 2013
"SYNTAX_GOSUB_NOT_ALLOWED_IN_SUBS"

SYNTAX_GOSUB_NOT _ALLOWED_IN_SUBS = 2014
"DOWNLOAD_ERROR"

DOWNLOAD_ERROR = 2015
" DOWNL OADFIRMWARE_ERROR"

DOWNLOADFIRMWARE_ERROR = 2016
"DOWNLOAD_FROM_FILE"

DOWNLOAD_FROM_FILE = 2017
"DOWNLOAD_NOT_ENOUGH_MEMORY"

DOWNLOAD_NOT_ENOUGH_MEMORY =2018
"DOWNLOAD_ERROR_IN_DOWNLOAD_CHECKSUM"

DOWNLOAD_ERROR_IN_DOWNLOAD_CHECKSUM = 2019
"DOWNLOAD_ERROR_IN_DOWNLOAD_RAMCHECK SUMERROR"

DOWNLOAD_ERROR_IN_DOWNLOAD_RAMCHECKSUMERROR = 2020

November 1998 Page 104 of 110

(EGO) .
Spirit.OCX . Technical Reference

Main thread:
"RETURN_ERROR_FROM_BRICK"

RETURN_ERROR _FROM_BRICK =2021
"RANGE_CHECK_ERROR"

RANGE_CHECK_ ERROR = 2022
“SEMANTIC IF_ ARGUMENTS OUT_OF RANGE"

SEMANTIC IF ARGUMENTS OUT_OF RANGE =2023
“SEMANTIC WHILE_ARGUMENTS OUT_OF_RANGE"

SEMANTIC WHILE_ ARGUMENTS OUT_OF RANGE = 2024
"SEMANTIC _LOOP_ARGUMENTS OUT_OF RANGE"

SEMANTIC LOOP_ARGUMENTS OUT_OF RANGE = 2025

Extra:

"DOWNLOAD_ERROR_UNKNOWN"

DOWNLOAD_ERROR_UNKNOWN = 2026
"DOWNLOAD_ALREADY_IN_DL_WHEN_RECIEVING_BEGIN"

DOWNLOAD_ALREADY_IN_DL_WHEN_RECIEVING_BEGIN = 2027
“DOWNLOAD_BRICK_|IS NOT_IN_DL_MODE"

DOWNLOAD_BRICK_IS NOT_IN_DL_MODE = 2028
“DOWNLOAD_SYNTAX_ERROR_IN_BLOCK"

DOWNLOAD_SYNTAX_ERROR_IN_BLOCK = 2029

Page 105 of 110 November 1998

Spirit.OCX

Technical Reference

Appendix C — RCXdata.bas:

Proj ect:

Uni t
Rev.

M ndSt or s
d obal nodul e
1.0

Decl aration of gl obal

nanes for

RCX-rel ated constants

Option Explicit

Syst em sounds

Publ i
Publ i
Publ i
Publ i
Publ i

c
c
c
c
c

Public

Const
Const
Const
Const
Const
Const

CLI CK_SOUND = 0
BEEP_SOUND = 1
SWEEP_DOWN_SOUND
SWEEP_UP_SOUND =
ERROR_SOUND = 4
SWEEP_FAST_SOUND

w

Sour ce nanes

Public Const VAR = 0
Public Const TIMER = 1
Public Const CON = 2

Publ i c Const MOTSTA =
Public Const RAN = 4
Public Const TACC = 5
Public Const TACS = 6
Public Const MOTCUR = 7
Publ i c Const KEYS = 8
Publ i ¢ Const SENVAL = 9
Publ i ¢ Const SENTYPE = 10
Publ i ¢ Const SENMODE = 11
Publ i ¢ Const SENRAW = 12
Public Const BOOL = 13
Public Const WATCH = 14
Publ i c Const PBMESS = 15

Sensor nanes
Public Const SENSOR 1 = 0
Public Const SENSOR 2 = 1
Public Const SENSOR 3 = 2
Ti mer nanes

Public Const TIMER 1 =0
Public Const TIMER 2 =1
Public Const TIMER 3 = 2
Public Const TIMER 4 = 3

November 1998

Page 106 of 110

Technical Reference

Spirit.0CX

Tacho nanmes (CyberMaster only)

Public Const LEFT_TACHO = 0
Public Const RIGHT_TACHO = 1

Sensor types

Public Const NO TYPE = 0
Public Const SW TCH_TYPE

=1
Public Const TEMP_TYPE = 2

Public Const LIGHT TYPE = 3
Public Const ANGLE TYPE = 4

Sensor nodes

Public Const RAW MODE = 0

Public Const BOOL_MODE = 1

Public Const TRANS_COUNT_MODE = 2
Publ i ¢ Const PERI OD_COUNT_MODE = 3
Publ i c Const PERCENT_MODE = 4
Public Const CELSIUS MODE = 5

Publ i c Const FAHRENHEI T_MODE = 6
Public Const ANGLE_MODE = 7

Qut put nanes

Public Const OUTPUT_A
Public Const OUTPUT_B
Publ i c Const OUTPUT_C

o n
N~ O

Logi cal conparison operators

Public Const GT =0

Public Const LT =1

Public Const EQ = 2

Public Const NE = 3

Time constants

Public Const M5 10 =

Public Const M5 20 = (2 * M5_10)
Public Const M5 30 = (3 * M5_10)
Public Const M5 40 = (4 * M5_10)
Public Const M5 50 = (5 * M5_10)
Public Const M5 60 = (6 * M5_10)
Public Const M5 70 = (7 * M5_10)
Public Const M5 80 = (8 * M5_10)
Public Const M5 90 = (9 * M5_10)
Public Const M5 100 = (10 * MS_10)
Public Const M5 200 = (20 * MS_10)
Public Const M5 300 = (30 * M5_10)
Public Const M5 400 = (40 * M5_10)
Public Const M5 500 = (50 * MS_10)
Public Const M5_700 = (70 * M5_10)
Public Const SEC 1 = (100 * MS_10)
Public Const SEC 2 = (2 * SEC 1)
Public Const SEC 3 = (3 * SEC 1)
Public Const SEC 5 = (5 * SEC 1)
Public Const SEC 10 = (10 * SEC 1)
Public Const SEC 15 = (15 * SEC 1)
Public Const SEC 20 = (20 * SEC 1)
Public Const SEC 30 = (30 * SEC 1)
Public Const MN_ 1 = (60 * SEC 1)

Page 107 of 110 November 1998

Spirit.0CX

Technical Reference

Appendix D - GetStarted.bas:

Project: MndStorms explanatory denmp project
Uni t : G obal nodul e
Rev. . 1.0

Decl aration of global names for sensors, tasks, subroutines, timers, varia-
bel s and constants.

11 I MPORTANT NOTI CE - WARNING !'!

It is the responsibility of the application programer to allocate the program
sub, task and variable nunbers w thout overlap in the individual prograns.

Option Explicit

Progr am nanes

Syntax: <descriptive name>Prog
Range: 0 to 4 (RCX), 0 (CyberMaster)

Publ i c Const MdtorControl Prog = 0

Task nanes

Syntax: <descriptive nane>Task
Range: 0 to 9 (RCX), 0 to 3 (CyberMaster)

Publ i c Const MotorOnOff Task = 0

Subr outi ne nanes

Synt ax: <descriptive name>Sub
Range: 0 to 7 (RCX), 0 to 3 (CyberMaster)

Publ i c Const Ni ceAndHandySu

b =0
Publ i ¢ Const Useful AndSmal | Sub =

1 ' and so on

Sensor nanes

Synt ax: s<descriptive name>

Public Const sStopButton = SENSOR 1
Publ i c Const sSearchLight = SENSOR 2

Qut put/ mot or nanes

Synt ax: o<descriptive nane> || nxdescriptive name>

Public Const oBlink = OQUTPUT_A
Public Const nfForward = OUTPUT_B

November 1998 Page 108 of 110

Technical Reference

Spirit.0CX

Ti mer nanes

Synt ax: t<descriptive name>

Public Const tDrum= TIMER 1
Public Const tStick = TTIMER 2 ' and so on

Vari abl e nanes

Synt ax: v<descriptive name>

Public Const vLeftThreshold = 0
Publ i c Const VvRi ghtThreshold =1

Const ant decl arations

Synt ax: k<descriptive name>

Publ i ¢ Const kForever = 0
Publ i ¢ Const kThreshol dOffset = 50

Logi cal constants

Publi c Const kFalse = 0
Public Const kTrue =1

Mot or control constants

Public Const kOFf =0
Public Const kOn =1
Public Const kFull Speed = 7

Public Const kFirm= 0
Publ i c Const kFixed =1
and so on

Page 109 of 110 November 1998

Technical Reference

Spirit.0CX

Synt ax: t<descriptive name>

Public Const tDrum = TIMER_1
Public Const tStick = TIMER_2 ' and so on

Vari abl e nanes

Synt ax: v<descriptive name>

Public Const vLeftThreshold = 0
Public Const vRi ghtThreshold =1

Const ant decl arations

Synt ax: k<descriptive name>

Public Const kForever =0
Public Const kThreshol dOffset = 50

Logi cal constants

Public Const kFalse = 0
Public Const kTrue =1

Mot or control constants

Public Const kOff = 0
Public Const kOn = 1
Public Const kFul |l Speed = 7

Your own stuff

Public Const kFirm= 0
Public Const kFixed =1
and so on

November 1998 Page 110 of 110

	Content
	Foreword
	LICENSE AGREEMENT
	Introduction
	Table of Contents
	OCX Overview
	Nomenklature
	Communication control
	InitComm()
	CloseComm()
	GetShortTermRetransStatistics()
	GetLongTermRetransmitStatistics()
	SetRetransmitRetries(ImmidiateRetries, DownloadRetries)
	IgnDLerrUntilGoodAnswer()

	Firmware control
	UnlockPBrick()
	UnlockFirmware(UnlockString)
	DownloadFirmware(FileName)

	Diagnostics commands
	PBAliveOrNot()
	TowerAndCableConnected()
	TowerAlive()

	PBrick System commands
	SelectDisplay(Source, Number)
	SetWatch(Hours, Min)
	PBPowerDownTime(Time)
	PBTurnOff()
	PBTxPower(Number)
	PlayTone(Frequency, Time)
	PlaySystemSound(Number)
	ClearTimer(Number)
	SendPBMessage(Source, Number)
	ClearPBMessage()

	PBrick Output control
	On(MotorList)
	Off(MotorList)
	Float(MotorList)
	SetFwd(MotorList)
	SetRwd(MotorList)
	AlterDir(MotorList)
	SetPower(MotorList, Source, Number)
	Wait(Source, Number)
	Drive(Number0, Number1)
	OnWait(Motorlist, Number, Time)
	OnWaitDifferent(Motorlist, Number0, Number1, Number2, Time)
	ClearTachoCounter(MotorList)

	PBrick Input control
	SetSensorType(Number, Type)
	SetSensorMode(Number, Mode, Slope)
	ClearSensorValue(Number)

	PBrick Program control
	SelectPrgm(Number)
	DeleteTask(Number)
	DeleteAllTasks()
	DeleteSub(Number)
	DeleteAllSubs()

	PBrick Program Execution control
	StartTask(Number)
	StopTask(Number)
	StopAllTasks()
	GoSub(Number)

	PBrick Flow control
	Loop(Source, Number)
	EndLoop()
	While(Source1, Number1, RelOp, Source2, Number2)
	EndWhile()
	If(Source1, Number1, RelOp, Source2, Number2)
	Else()
	EndIf()
	BeginOfTask(Number)
	EndOfTask()
	EndOfTaskNoDownload()
	BeginOfSub(Number)
	EndOfSub()
	EndOfSubNoDownload()

	PBrick Arithmetic/Logical commands
	SetVar(VarNo, Source, Number)
	SumVar(VarNo, Source, Number)
	SubVar(VarNo, Source, Number)
	DivVar(VarNo, Source, Number)
	MulVar(VarNo, Source, Number)
	SgnVar(VarNo, Source, Number)
	AbsVar(VarNo, Source, Number)
	AndVar(VarNo, Source, Number)
	OrVar(VarNo, Source, Number)

	PBrick Query commands
	SetEvent(Source, Number, Time)
	ClearEvent(Source, Number)
	Poll(Source, Number)
	PBBattery()
	MemMap()

	PBrick data acquisition commands (RCX only):
	SetDatalog(Size)
	DatalogNext(Source, Number)
	UploadDatalog(From, Size)

	ActiveX Control
	SetThreadPriority(threadNo, threadClass, ThreadPriority)
	GetThreadPriority(threadNo, threadClass, ThreadPriority)

	ActiveX Event Dispatch interface
	[OLE Event]: VariableChange (Number, Value)
	[OLE Event]: DownloadDone (ErrorCode, TaskNo)
	[OLE Event]: DownloadStatus (DownloadTimeInMS, sizeInBytes, taskNo)
	[OLE Event]: AsyncronBrickError (Number, Description)

	ParameterTable #1
	ParameterTable #2
	Appendix A: Errorhandling while downloading code to PBrick
	Appendix B: Errorcodes
	Appendix C: RCXdata.bas
	Appendix D: GetStarted.bas

