
H8/300L Series
Programming Manual

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the
whole or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from
applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any
third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning to
use the products in MEDICAL APPLICATIONS.

i

Contents

Preface1

Section 1. CPU...3
1.1 Overview ... 3

1.1.1 Features .. 3
1.1.2 Data Structure... 4
1.1.3 Address Space... 6
1.1.4 Register Configuration.. 6

1.2 Registers .. 7
1.2.1 General Registers.. 7
1.2.2 Control Registers .. 7
1.2.3 Initial Register Values .. 8

1.3 Instructions .. 9
1.3.1 Types of Instructions... 9
1.3.2 Instruction Functions .. 9
1.3.3 Basic Instruction Formats ... 20
1.3.4 Addressing Modes and Effective Address Calculation .. 25

Section 2. Instruction Set..31
2.1 Explanation Format.. 31

ADD (add binary) (byte).. 31
2.2 Instructions .. 36

2.2.1(1) ADD (add binary) (byte) .. 36
2.2.1 (2) ADD (add binary) (word) .. 37
2.2.2 ADDS (add with sign extension)... 38
2.2.3 ADDX (add with extend carry) ... 39
2.2.4 AND (AND logical).. 40
2.2.5 ANDC (AND control register) .. 41
2.2.6 BAND (bit AND).. 42
2.2.7 Bcc (branch conditionally).. 44
2.2.8 BCLR (bit clear) ... 47
2.2.9 BIAND (bit invert AND) .. 49
2.2.10 BILD (bit invert load) ... 51
2.2.11 BIOR (bit invert inclusive OR) ... 53
2.2.12 BIST (bit invert store)... 55
2.2.13 BIXOR (bit invert exclusive OR) .. 57
2.2.14 BLD (bit load) .. 59
2.2.15 BNOT (bit NOT) .. 61
2.2.16 BOR (bit inclusive OR)... 63

ii

2.2.17 BSET (bit set) ... 65
2.2.18 BSR (branch to subroutine)... 67
2.2.19 BST (bit store) .. 68
2.2.20 BTST (bit test).. 70
2.2.21 BXOR (bit exclusive OR) ... 72
2.2.22 (1) CMP (compare) (byte) CMP.. 74
2.2.22 (2) CMP (compare) (word).. 75
2.2.23 DAA (decimal adjust add) .. 76
2.2.24 DAS (decimal adjust subtract) .. 78
2.2.25 DEC (decrement) .. 79
2.2.26 DIVXU (divide extend as unsigned).. 80
2.227 EEPMOV (move date to EEPROM)... 83
2.2.28 INC (increment... 85
2.2.29 JMP (jump)... 86
2.2.30 JSR (Jump to subroutine) .. 87
2.2.31 LDC (load to control register) ... 88
2.2.32 (1) MOV (move data) (byte) ... 89
2.2.32(2) MOV (move data) (word) ... 90
2.2.32(3) MOV (move data) (byte) .. 91
2.2.32(4) MOV (move data) (word) ... 93
2.2.32(5) MOV (move) data) (byte)... 95
2.2.32(6) MOV (move data) (word) ... 96
2.2.33 MULXU (multiply extend as unsigned) .. 98
2.2.34 NEG (negate).. 99
2.2.35 NOP (no operation)... 100
2.2.36 NOT (NOT = logical complement) ... 101
2.2.37 OR (inclusive OR logical)... 102
2.2.38 ORC (inclusive OR control register) ... 103
2.2.39 POP (pop data).. 104
2.2.40 PUSH (push data) ... 105
2.2.41 ROTL (rotate left)... 106
2.2.42 ROTR (rotate right) .. 107
2.2.43 ROTXL (rotate with extend carry left) .. 108
2.2.44 ROTXR (rotate with extend carry right).. 109
2.2.45 RTE (return from exception)... 110
2.2.46 RTS (return from subroutine).. 111
2.2.47 SHAL (shift arithmetic left) .. 112
2.2.48 SHAR (shift arithmetic right).. 113
2.2.49 SHLL (shift logical left).. 115
2.2.50 SHLR (shift logical right) ... 117
2.2.51 SLEEP (sleep) .. 119
2.2.52 STC (store from control register) .. 120
2.2.53(1) SUB (subtract binary) (byte)... 121

iii

2.2.53(2) SUB (subtract binary) (word).. 123
2.2.54 SUBS (subtract with sign extension) ... 124
2.2.55 SUBX (subtract with extend carry) ... 125
2.2.56 XOR (exclusive OR logical) ... 126
2.2.57 XORC (exclusive OR control register) .. 127

2.3 Operation Code Map.. 128
2.4 List of Instructions ... 130
2.5 Number of Execution States... 138

Section 3. CPU Operation States ..145
3.1 Program Execution State.. 146
3.2 Exception Handling States ... 146

3.2.1 Types and Priorities of Exception Handling .. 146
3.2.2 Exception Sources and Vector Table... 148
3.2.3 Outline of Exception Handling Operation ... 148

3.3 Reset State ... 149
3.4 Power-Down State ... 149

Section 4. Basic Operation Timing ...151
4.1 On-chip Memory (RAM, ROM)... 151
4.2 On-chip Peripheral Modules and External Devices... 152

iv

1

Preface

The H8/300L Series of single-chip microcomputers is built around the high-speed H8/300L
CPU, with an architecture featuring eight 16-bit (or sixteen 8-bit) general registers and a concise,
optimized instruction set.

This manual gives detailed descriptions of the H8/300L instructions. The descriptions apply to
all chips in the H8/300L Series. Assembly-language programmers should also read the separate
H8/300 Series Cross Assembler User's Manual.

For hardware details, refer to the hardware manual of the specific chip.

2

3

Section 1. CPU

1.1 Overview

The H8/300L CPU at the heart of the H8/300L Series features 16 general registers of 8 bits each
(or 8 registers of 16-bits each), and a concise, optimized instruction set geared to high-speed
operation.

1.1.1 Features

The H8/300L CPU has the following features.

• General register configuration

16 8-bit registers (can be used as 8 16-bit registers)

• 55 basic instructions

 Multiply and divide instructions

 Powerful bit manipulation instructions

• 8 addressing modes

 Register direct (Rn)

 Register indirect (@Rn)

 Register indirect with displacement (@(d: 16, Rn))

 Register indirect with post-increment/pre-decrement (@Rn+/@-Rn)

 Absolute address (@aa:8/@aa:16)

 Immediate (#xx:8/#xx:16)

 Program-counter relative (@(d:8, PC))

 Memory indirect (@@aa:8)

• 64-kbyte address space

• High-speed operation

 All frequently used instructions are executed in 2 to 4 states

 High-speed operating frequency: 5 MHz

• Add/subtract between 8/1 6-bit registers: 0.4 µs

8 × 8-bit multiply: 2.8 µs

16 ÷ 8-bit divide: 2.8 µs

• Low-power operation

Transition to power-down state using SLEEP instruction

4

1.1.2 Data Structure

The H8/300L CPU can process 1-bit data, 4-bit (packed BCD) data, 8-bit (byte) data, and 1 6-bit
(word) data.

• Bit manipulation instructions operate on 1-bit data specified as bit n (n = 0, 1, 2, ..., 7) in a
byte operand.

• All operational instructions except ADDS and SUBS can operate on byte data.

• The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and
DIVXU (16 bits ÷ 8 bits) instructions operate on word data.

• The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in
packed BCD form. Each 4-bit of the byte is treated as a decimal digit.

Data Structure in General Registers: Data of all the sizes above can be stored in general
registers as shown in figure 1-1.

Data type Register No. Data format

1-Bit data RnH
Don't - care7 6 5 4 3 2 1 0

07

1-Bit data RnL 07

67 45 23 01Don't - care

Byte data RnH 07

Don't - care
M

S

B

L

S

B

Byte data RnL

Don't - care

7 0
M

S

B

L

S

B

Word data Rn 15 0
M

S

B

L

S

B

4-Bit BCD data RnH

Upper Lower

7 0

Don't - care

34

4-Bit BCD data RnL

Upper

7

Lower

0

Don't - care

4 3

RnH: Upper 8 bits of General Register
RnL: Lower 8 bits of General Register
MSB: Most Significant Bit
LSB: Least Significant Bit

Figure 1-1. Register Data Structure

5

Data Structure in Memory: Figure 1-2 shows the structure of data in memory. The H8/300L
CPU is able to access word data in memory (MOV.W instruction), but only if the word data
starts from an even-numbered address. If an odd address is designated, no address error occurs,
but the access is performed starting from the previous even address, with the least significant bit
of the address regarded as 0.* The same applies to instruction codes.

* Note that the LSIs in the H8/300L Series also contain on-chip peripheral modules for
which access in word size is not possible. Details are given in the applicable hardware
manual.

Data Type Data FormatAddress

1-Bit data Address n 7 6 5 4 3 2 1 0

07

Address nByte data
M

S

B

L

S

B

Even address Upper 8 bits

Odd address Lower 8 bits
Word data

Even address

Odd address
Byte data (CCR) on stack

CCR*

CCR

Even address

Odd address
Word data on stack

CCR : Condition code register.

Note : Word data must begin at an even address.

* : Ignored when returned.

M

S

B

L

S

B

L

S

B

L

S

B

M

S

B

M

S

B

M

S

B

L

S

B

Upper 8 bits

Lower 8 bits

Figure 1-2. Memory Data Formats

The stack is always accessed a word at a time. When the CCR is pushed on the stack, two
identical copies of the CCR are pushed to make a complete word. When they are returned, the
lower byte is ignored.

6

1.1.3 Address Space

The H8/300L CPU supports a 64-Kbyte address space (program code + data). The memory map
differs depending on the particular chip in the H8/300L Series and its operating mode. See the
applicable hardware manual for details.

1.1.4 Register Configuration

Figure 1-3 shows the register configuration of the H8/300L CPU. There are 16 8-bit general
registers (R0H, R0L, ..., R7H, R7L), which can also be accessed as eight 16-bit registers (R0 to
R7). There are two control registers: the 16-bit program counter (PC) and the 8-bit condition
code register (CCR).

7
R0H R0L

R1LR1H

R2LR2H

R3LR3H

R4LR4H

R5LR5H

R6LR6H

R7LR7H (SP)

70 0

SP: Stack Pointer

15 0

PC Program Counter

Condition Code Register

Carry flag

Overflow flag

Zero flag

Negative flag
Half-carry flag

Interrupt mask bit

ICCR U H U N Z V C

User bit

47 56 123 0

General Registers (Rn)

Control Registers (CR)

Figure 1-3. CPU Registers

7

1.2 Registers

1.2.1 General Registers

All the general registers can be used as both data registers and address registers. When used as
address registers, the general registers are accessed as 16-bit registers (R0 to R7). When used as
data registers, they can be accessed as 16-bit registers (R0 to R7), or the high (R0H to R7H) and
low (R0L to R7L) bytes can be accessed separately as 8-bit registers. The register length is
determined by the instruction.

R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and
subroutine calls. In assembly language, the letters SP can be coded as a synonym for R7. As
indicated in figure 1-4, R7 (SP) points to the top of the stack.

Unused area

SP (R7)

Stack area

Figure 1-4. Stack Pointer

1.2.2 Control Registers

The CPU has a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction the
CPU will execute. Instructions are fetched by 16-bit (word) access, so the least significant bit
of the PC is ignored (always regarded as 0).

(2) Condition Code Register (CCR): This 8-bit register indicates the internal status of the CPU
with an interrupt mask (I) bit and five flag bits: half-carry (H), negative (N), zero (Z),
overflow (V), and carry (C) flags. The two unused bits are available to the user. The bit
configuration of the condition code register is shown below.

8

Initial value

Read/Write

7 6 5 4 3 2 1 0

*

Bit

R/W

******1

R/W R/W R/W R/W R/W R/W R/W

 Not fixed*

I U H U N Z V C

Bit 7--Interrupt Mask Bit (I): When this bit is set to 1, all interrupts except NMI are masked.
This bit is set to I automatically at the start of interrupt handling.

Bits 6 and 4--User Bits (U): These bits can be written and read by software for its own purposes
using LDC, STC, ANDC, ORC, and XORC instructions.

Bit 5--Half-Carry (H): This bit is used by add, subtract, and compare instructions to indicate a
borrow or carry out of bit 3 or bit 11. It is referenced by the decimal adjust instructions.

Bit 3--Negative (N): This bit indicates the value of the most significant bit (sign bit) of the
result of an instruction.

Bit 2--Zero (Z): This bit is set to 1 to indicate a zero result and cleared to 0 to indicate a
nonzero result.

Bit 1--Overflow (V): This bit is set to 1 when an arithmetic overflow occurs, and cleared to 0 at
other times.

Bit 0--Carry (C): This bit is used by:

• Add, subtract, and compare instructions, to indicate a carry or borrow at the most significant
bit

• Shift and rotate instructions, to store the value shifted out of the most or least significant bit

• Bit manipulation instructions, as a bit accumulator

Note that some instructions involve no flag changes. The flag operations with each instruction
are indicated in the individual instruction descriptions that follow in section 2, Instruction Set.
CCR is used by LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are
used by the conditional branch instruction (Bcc).

1.2.3 Initial Register Values

When the CPU is reset, the program counter (PC) is loaded from the vector table and the
interrupt mask bit (I) in CCR is set to 1. The other CCR bits and the general registers are not
initialized.

The initial value of the stack pointer (R7) is not fixed. To prevent program crashes the stack
pointer should be initialized by software, by the first instruction executed after a reset.

9

1.3 Instructions

Features:

• The H8/300L CPU has a concise set of 55 instructions.

• A general-register architecture is adopted.

• All instructions are 2 or 4 bytes long.

• Fast multiply/divide instructions and extensive bit manipulation instructions are supported.

• Eight addressing modes are supported.

1.3.1 Types of Instructions

Table 1-1 classifies the H8/300L instructions by type. Section 2, Instruction Set, gives detailed
descriptions.

Table 1-1. Instruction Classification

Function Instructions Types

Data transfer MOV, POP*, PUSH* 1

Arithmetic
operations

ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS,

DAA, DAS, MULXU, DIVXU, CMP, NEG,

14

Logic operations AND, OR, XOR, NOT 4

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL,

ROTXR

8

Bit manipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR

BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST

14

Branch Bcc**, JMP, BSR, JSR, RTS 5

System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8

Block data transfer EEPMOV 1

Total 55

* POP Rn is equivalent to MOV.W @SP+, Rn.
PUSH Rn is equivalent to MOV.W Rn, @-SP.

** Bcc is a conditional branch instruction in which cc represents a condition.

1.3.2 Instruction Functions

Tables 1-2 to 1-9 give brief descriptions of the instructions in each functional group. The
following notation is used.

10

Notation

Rd General register (destination)

Rs General register (source)

Rn General register

(EAd) Destination operand

(EAs) Source operand

CCR Condition code register

N N (negative) bit of CCR

Z Z (zero) bit of CCR

V V (overflow) bit of CCR

C C (carry) bit of CCR

PC Program counter

SP Stack pointer (R7)

#Imm Immediate data

op Operation field

disp Displacement

+ Addition

- Subtraction

× Multiplication

÷ Division

∧ AND logical

∨ OR logical

⊕ Exclusive OR logical

→ Move

¬ Not

:3, :8, :16 3-bit, 8-bit, or 16-bit length

11

Table 1-2. Data Transfer Instructions

Instruction Size* Function

MOV B/W (EAs) → Rd, Rs → (EAd)
Moves data between two general registers or between a general register
and memory, or moves immediate data to a general register.
The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:8 or #xx:16, @-Rn, and @Rn+
addressing modes are available for byte or word data. The @aa:8
addressing mode is available for byte data only.
The @-R7 and @R7+ modes require word operands. Do not specify byte
size for these two modes.

POP W @SP+ → Rn
Pops a 16-bit general register from the stack.
Equivalent to MOV.W @SP+, Rn.

PUSH W Rn → @-SP
Pushes a 16-bit general register onto the stack.
Equivalent to MOV.W Rn, @-SP.

* Size: Operand size
B: Byte
W: Word

12

Table 1-3. Arithmetic Instructions

Instruction Size* Function

ADD
SUB

B/W Rd ± Rs → Rd, Rd + #Imm → Rd
Performs addition or subtraction on data in two general registers, or
addition on immediate data and data in a general register.
Immediate data cannot be subtracted from data in a general
register.
Word data can be added or subtracted only when both words are in
general registers.

ADDX
SUBX

B Rd ± Rs ± C → Rd, Rd ± #Imm ± C → Rd
Performs addition or subtraction with carry or borrow on byte data
in two general registers, or addition or subtraction on immediate
data and data in a general register.

INC
DEC

B Rd ± 1 → Rd
Increments or decrements a general register.

ADDS
SUBS

W Rd ± 1 → Rd, Rd ± 2 → Rd
Adds or subtracts immediate data to or from data in a general
register. The immediate data must be 1 or 2.

DAA
DAS

B Rd decimal adjust → Rd
Decimal-adjusts (adjusts to packed BCD) an addition or subtraction
result in a general register by referring to the condition code
register.

MULXU B Rd × Rs → Rd
Performs 8-bit × 8-bit unsigned multiplication on data in two general
registers, providing a 16-bit result.

DIVXU B Rd ÷ Rs → Rd
Performs 16-bit ÷ 8-bit unsigned division on data in two general
registers, providing an 8-bit quotient and 8-bit remainder.

CMP B/W Rd - Rs, Rd-#Imm
Compares data in a general register with data in another general
register or with immediate data. Word data can be compared only
between two general registers.

NEG B 0 - Rd → Rd
Obtains the two's complement (arithmetic complement) of data in a
general register.

* Size: Operand size
B: Byte
W: Word

13

Table 1-4. Logic operation Instructions

Instruction Size* Function

AND B Rd ∧ Rs → Rd, Rd ∧ #Imm → Rd
Performs a logical AND operation on a general register and another
general register or immediate data.

OR B Rd ∨ Rs → Rd, Rd ∨ #Imm → Rd
Performs a logical OR operation on a general register and another
general register or immediate data.

XOR B Rd ⊕ Rs → Rd, Rd ⊕ #Imm → Rd
Performs a logical exclusive OR operation on a general register and
another general register or immediate data.

NOT B ¬ Rd → Rd
Obtains the one's complement (logical complement) of general register
contents.

* Size: Operand size
B: Byte

Table 1-5. Shift Instructions

Instruction Size* Function

SHAL
SHAR

B Rd shift → Rd
Performs an arithmetic shift operation on general register contents.

SHLL
SHLR

B Rd shift → Rd
Performs a logical shift operation on general register contents.

ROTL
ROTR

B Rd rotate → Rd
Rotates general register contents.

ROTXL
ROTXR

B Rd rotate through carry → Rd
Rotates general register contents through the C (carry) bit.

* Size: Operand size
B: Byte

14

Table 1-6. Bit Manipulation Instructions

Instruction Size* Function
BSET B 1 → (<bit-No.> of <EAd>)

Sets a specified bit in a general register or memory to 1. The bit is specified by a bit
number, given in 3-bit immediate data or the lower three bits of a general register.

BCLR B 0 → (<bit-No.> of <EAd>)
Clears a specified bit in a general register or memory to 0. The bit is specified by a
bit number, given in 3-bit immediate data or the lower three bits of a general
register.

BNOT B ¬ (<bit-No.> of <EAd>) → (<bit-No.> of <EAd>)
Inverts a specified bit in a general register or memory. The bit is specified by a bit
number, given in 3-bit immediate data or the lower three bits of a general register.

BTST B ¬ (<bit-No.> of <EAd>) → Z
Tests a specified bit in a general register or memory and sets or clears the Z flag
accordingly. The bit is specified by a bit number, given in 3-bit immediate data or the
lower three bits of a general register.

BAND

BIAND

B

B

C ∧ (<bit-No.> of <EAd>) → C
ANDs the C flag with a specified bit in a general register or memory.
C ∧ [¬ (<bit-No.> of <EAd>)] → C
ANDs the C flag with the inverse of a specified bit in a general register or memory.
The bit number is specified by 3-bit immediate data.

BOR

BIOR

B

B

C ∨ (<bit-No.> of <EAd>) → C
ORs the C flag with a specified bit in a general register or memory.
C ∨ [¬(<bit-No.> of <EAd>)] → C
ORs the C flag with the inverse of a specified bit in a general register or memory.
The bit number is specified by 3-bit immediate data.

BXOR

BIXOR

B

B

C ⊕ (<bit-No.> of <EAd>) → C
Exclusive-ORs the C flag with a specified bit in a general register or memory.
C ⊕ [¬(<bit-No.> of <EAd>)] → C
Exclusive-ORs the C flag with the inverse of a specified bit in a general register or
memory.
The bit number is specified by 3-bit immediate data.

BLD

BILD

B

B

(<bit-No.> of <EAd>) → C
Copies a specified bit in a general register or memory to the C flag.
¬(<bit-No.> of <EAd>) → C
Copies the inverse of a specified bit in a general register or memory to the C flag.
The bit number is specified by 3-bit immediate data.

BST

BIST

B

B

C → (<bit-No.> of <EAd>)
Copies the C flag to a specified bit in a general register or memory.
¬C → (<bit-No.> of <EAd>)
Copies the inverse of the C flag to a specified bit in a general register or memory.
The bit number is specified by 3-bit immediate data.

* Size: Operand size
B: Byte

15

Table 1-7. Branching Instructions

Instruction Size Function

Bcc -- Branches if condition cc is true. The branching conditions are as follows.

Mnemonic Description Condition

BRA (BT) Always (True) Always

BRN (BF) Never (False) Never

BHI High C ∨ Z = 0

BLS Low or Same C ∨ Z = 1

BCC (BHS) Carry Clear (High
or Same)

C = 0

BCS (BLO) Carry Set (Low) C = 1

BNE Not Equal Z = 0

BEQ Equal Z = 1

BVC Overflow Clear V = 0

BVS Overflow Set V = 1

BPL Plus N = 0

BMI Minus N = 1

BGE Greater or Equal N ⊕ V = 0

BLT Less Than N ⊕ V = 1

BGT Greater Than Z ∨ (N ⊕ V) = 0

BLE Less or Equal Z ∨ (N ⊕ V) = 1

JMP -- Branches unconditionally to a specified address.

BSR -- Branches to a subroutine at a specified displacement from the current
address.

JSR -- Branches to a subroutine at a specified address.

RTS -- Returns from a subroutine.

16

Table 1-8. System Control Instructions

Instruction Size* Function

RTE -- Returns from an exception handling routine.

SLEEP -- Causes a transition to power-down state.

LDC B Rs → CCR, #Imm → CCR
Moves immediate data or general register contents to the condition code
register.

STC B CCR → Rd
Copies the condition code register to a specified general register.

ANDC B CCR ∧ #Imm → CCR
Logically ANDs the condition code register with immediate data.

ORC B CCR ∨ #Imm → CCR
Logically ORs the condition code register with immediate data.

XORC B CCR ⊕ #Imm → CCR
Logically exclusive-ORs the condition code register with immediate data.

NOP -- PC + 2 → PC
Only increments the program counter.

* Size: Operand size
B: Byte

Table 1-9. Block Data Transfer Instruction

Instruction Size Function

EEPMOV -- if R4L ≠ 0 then
repeat @RS+ → @R6+

R4L - 1 → R4L
until R4L = 0

else next;
Moves a data block according to parameters set in general registers

R4L, R5, and R6.
R4L: size of block (bytes)
R5: starting source address
R6: starting destination address

Execution of the next instruction starts as soon as the block transfer is completed.

This instruction is for writing to the large-capacity EEPROM provided on chip with some
models in the H8/300L Series. For details see the applicable hardware manual.

17

Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-
modify-write instructions. They read a byte of data, modify one bit in the byte, then write the
byte back. Care is required when these instructions are applied to registers with write-only bits
and to the I/O port registers.

Sequence Operation

1 Read Read one data byte at the specified address

2 Modify Modify one bit in the data byte

3 Write Write the modified data byte back to the specified address

Example 1: BCLR is executed to clear bit 0 in port control register 4 (PCR4) under the
following conditions.

P47: Input pin, Low

P46: Input pin, High

P45 - P40: Output pins, Low

The intended purpose of this BCLR instruction is to switch P40 from output to input.

Before Execution of BCLR Instruction

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low

PCR4 0 0 1 1 1 1 1 1

PDR4 1 0 0 0 0 0 0 0

Execution of BCLR Instruction

BCLR #0 @PCR4 ;clear bit 0 in PCR4

After Execution of BCLR Instruction

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Output Output Output Output Output Output Output Input

Pin state Low High Low Low Low Low Low High

PCR4 1 1 1 1 1 1 1 0

PDR4 1 0 0 0 0 0 0 0

18

Explanation: To execute the BCLR instruction, the CPU begins by reading PCR4. Since PCR4
is a write-only register, it is read as H'FF, even though its true value is H'3F.

Next the CPU clears bit 0 of the read data, changing the value to H'FE.

Finally, the CPU writes this value (H'FE) back to PCR4 to complete the BCLR instruction.

As a result, bit 0 in PCR4 is cleared to 0, making P40 an input pin. In addition, bits 7 and 6 in
PCR4 are set to 1, making P47 and P46 output pins.

Example 2: BSET is executed to set bit 0 in the port 4 port data register (PDR4) under the
following conditions.

P47: Input pin, Low

P46: Input pin, High

P45 P40: Output pins, Low

The intended purpose of this BSET instruction is to switch the output level at P40 from Low to
High.

Before Execution of BSET Instruction

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low

PCR4 0 0 1 1 1 1 1 1

PDR4 1 0 0 0 0 0 0 0

Execution of BSET Instruction

BSET #0 @PDR4 ;set bit 0 in port 4 port data register

After Execution of BSET Instruction

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High

PCR4 0 0 1 1 1 1 1 1

PDR4 0 1 0 0 0 0 0 1

19

Explanation: To execute the BSET instruction, the CPU begins by reading port 4. Since P47
and P46 are input pins, the CPU reads the level of these pins directly, not the value in the port
data register. It reads P47 as Low (0) and P46 as High (1).

Since P45 to P40 are output pins, for these pins the CPU reads the value in PDR4. The CPU
therefore reads the value of port 4 as H'40, although the actual value in PDR4 is H'80.

Next the CPU sets bit 0 of the read data to 1, changing the value to H'41.

Finally, the CPU writes this value (H'41) back to PDR4 to complete the BSET instruction.

As a result, bit 0 in PDR4 is set to 0, switching pin P40 to High output. However, bits 7 and 6 in
PDR4 change their values.

20

1.3.3 Basic Instruction Formats

(1) Format of Data Transfer Instructions

Figure 1-5 shows the format used for data transfer instructions.

15 8 7 0

m Rm

15 78 0

15 78 0

15

15

7

op

8

78

abs.

0

0

op n

disp.

15

abs.

7

op

8 0

15

15

78

78

0

0

15

op

78 0

Rn

Rn @Rm, or @Rm Rn 							op

@(d:16,Rm) Rn, or

Rn @(d:16,Rm)

op

@ Rm+ Rn, or Rn @-Rmop

IMMop Rn# xx:8

op

IMM
xx:16 Rn

POP, PUSH

MOV

r r

m nr r

m nr r

m nr r

@ aa :8 Rn, or Rn @ aa :8 nr

nr @ aa :16 Rn, or

Rn @ aa :16

nr

nr

nr

Notation

op 			: Operation field

r , r : Register field

disp. : Displacement

abs. : Absolute address

IMM : Immediate 		data

m n

Figure 1-5.Instruction Format of Data Transfer Instructions

21

(2) Format of Arithmetic, Logic Operation, and Shift Instructions

Figure 1-6 shows the format used for arithmetic, logic operation, and shift instructions.

15 8 7 0

o p ADD, SUB, CMP(Rm)

15 7

op

8 0

15 78 0

MULXU, DIVXUop

m
ADDX, SUBX (Rm)

DAS, NEG, NOT
ADDS, SUBS, INC, DEC, DAA,

15

15

op

(#xx :8)
ADD, ADDX, SUBX, CMP

7

7

8

8

0

IMM

0

AND, OR, XOR (Rm)

15

15

op

AND, OR, XOR (#xx:8)

7

7

8

8

0

0

SHAL, SHAR, SHLL, SHLR,

op

op IMM

ROTL, ROTR, ROTXL, ROTXR

r nr

nr

mr nr

mr nr

nr

Notation

op 			: Operation field

r , r : Register field

IMM : Immediate 		data
m n

nr

nr

Figure 1-6. Instruction Format of Arithmetic, Logic, and Shift Instructions

22

(3) Format of Bit Manipulation Instructions

Figure 1-7 shows the format used for bit manipulation instructions.

15 8 7 0

op Operand: register direct (Rn)

15 7

op

8 0

Bit No.: register direct (Rm)

0 0 0 0

0 0 0 0 IMMop

Operand: register indirect (@Rn)

Bit No.: immediate (#xx:3)

op

15

op Operand: absolute (@aa:8)

Bit No.: immediate (#xx:3)

78

IMM

abs.

0 0 0 0

0

BSET, BCLR, BNOT, BTST

op

15

Bit No.: immediate (#xx:3)
Operand: register direct (Rn)

78

IMM n

0

op

15

op

Bit No.: register direct (Rm)

Operand: register indirect (@Rn)

78

0 0 0 0

0 0 0 0

0

op

15

op Operand: absolute (@aa:8)

Bit No.: register direct (Rm)

78

abs

0 0 0 0

0

op

15
BAND, BOR, BXOR, BLD, BST

Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

78

IMM

0

op

op

15

op

15

op Operand: register indirect (@Rn)

Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)

Bit No.: immediate (#xx:3)

78

abs

IMM

IMM

0 0 0 0

0 0 0 0

0

78

0 0

0

0 0

r

nr

nr

mr

nr

mr

mr

nr

nr

Notation

op 			: Operation field

r , r : Register field

abs. : Absolute address

IMM : Immediate 		data

m n

Figure 1-7. Instruction Format of Bit Manipulation Instructions

23

15 8 7 0

op Operand: register direct (Rn)

15 7

op

8 0

Bit No.: immediate (#xx:3)IMM n

0 0 0 0

0 0 0 0 IMMop

Operand: register indirect (@Rn)

Bit No.: immediate (#xx:3)

op

15

op Operand: absolute (@aa:8)

Bit No.: immediate (#xx:3)

78

IMM

abs.

0 0 0 0

0

BIAND, BIOR, BIXOR, BILD, BIST

r

nr

Notation

op 			: Operation field

r , r : Register field

abs. : Absolute address

IMM : Immediate 		data

m n

Figure 1-7. Instruction Format of Bit Manipulation Instructions (Cont.)

24

(4) Format of Branching Instructions

Figure 1-8 shows the format used for branching instructions.

15 8 7 0
cc Bcc

15 7
op

8 0
JMP (@Rm)

15 78 0

0

op

15

15

15

7

7

8

op
8

78
op

0

disp.
0

BSR

0

op disp.

m

abs.

abs.

0 0 0

JMP (@aa:16)

JMP (@@aa:8)

0000op JSR (@Rm)

15

15
op

op

15

abs.
7

78

8

0

0

RTS

JSR (@@aa:8)

abs.

7
op

8 0

JSR (@aa:16)

Notation

op 			: Operation field

cc : Condition field

r : Register field

disp. : Displacement

abs. : Absolute address

m

r

mr

Figure 1-8. Instruction Format of Branching Instructions

25

(5) Format of System Control Instructions

Figure 1-9 shows the format used for system control instructions.

15 8 7 0

op RTE, SLEEP, NOP

15 7

op

8 0

LDC, STC (Rn)

15 78 0

ANDC, ORC,XORC, LDC
(#xx:8)

n

IMMop

Notation

op 			: Operation field

r , r : Register field

IMM : Immediate 		data
m n

r

Figure 1-9. Instruction Format of System Control Instructions

(6) Format of Block Data Transfer Instruction

Figure 1-10 shows the format used for the block data transfer instruction.

15 8 7

EEPMOV
op

op

0

Figure 1-10. Instruction Format of Block Data Transfer Instruction

1.3.4 Addressing Modes and Effective Address Calculation

Table 1-10 lists the eight addressing modes and their assembly-language notation. Each
instruction can use a specific subset of these addressing modes.

Arithmetic, logic, and shift instructions use register direct addressing (1). The ADD.B, ADDX,
SUBX, CMP.B, AND, OR, and XOR instructions can also use immediate addressing (6).

The MOV instruction uses all the addressing modes except program-counter relative (7) and
memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute (5)
addressing to identify a byte operand and 3-bit immediate addressing to identify a bit within the
byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct addressing
(I) to identify the bit.

26

Table 1-10. Addressing Modes

No. Mode Notation

(1) Register direct Rn

(2) Register indirect @Rn

(3) Register indirect with 16-bit displacement @(d:16, Rn)

(4) Register indirect with post-increment
Register indirect with pre-decrement

@Rn+
@-Rn

(5) Absolute address (8 or 16 bits) @aa:8, @aa:16

(6) Immediate (3-, 8-, or 16-bit data) #xx:3, #xx:8, #xx:16

(7) PC-relative (8-bit displacement) @(d:8, PC)

(8) Memory indirect @@aa:8

(1) Register Direct--Rn: The register field of the instruction specifies an 8- or 16-bit general
register containing the operand. In most cases the general register is accessed as an 8-bit
register. Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8
bits), and DIVXU (16 bits ÷ 8 bits) instructions have 16-bit operands.

(2) Register indirect--@Rn: The register field of the instruction specifies a 16-bit general
register containing the address of the operand.

(3) Register Indirect with Displacement--@(d:16, Rn): This mode, which is used only in
MOV instructions, is similar to register indirect but the instruction has a second word (bytes
3 and 4) which is added to the contents of the specified general register to obtain the operand
address. For the MOV.W instruction, the resulting address must be even.

(4) Register Indirect with Post-Increment or Pre-Decrement--@Rn+ or @-Rn:

 Register indirect with post-increment @Rn+

The @Rn+ mode is used with MOV instructions that load registers from memory. It is
similar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is incremented after the operand is accessed. The size of
the increment is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a
word operand. For a word operand, the original contents of the 16-bit general register
must be even.

 Register indirect with pre-decrement @-Rn

The @-Rn mode is used with MOV instructions that store register contents to memory. It
is similar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is incremented before the operand is accessed. The size of
the decrement is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a
word operand. For a word operand, the original contents of the 16-bit general register
must be even.

27

(5) Absolute Address--@aa:8 or @aa:16: The instruction specifies the absolute address of the
operand in memory. The @aa:8 mode uses an 8-bit absolute address of the form H'FFxx. The
upper 8 bits are assumed to be 1, so the possible address range is H'FF00 to H'FFFF (65280
to 65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute
addresses.

(6) Immediate--#xx:8 or #xx:16: The instruction contains an 8-bit operand in its second byte, or
a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain 16-bit
immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data.
Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or
fourth byte of the instruction, specifying a bit number.

(7) PC-Relative--@(d:8, PC): This mode is used to generate branch addresses in the Bcc and
BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign-
extended value to the program counter contents. The result must be an even number. The
possible branching range is -126 to +128 bytes (-63 to +64 words) from the current address.

(8) Memory Indirect--@@aa:8: This mode can be used by the JMP and JSR instructions. The
second byte of the instruction code specifies an 8-bit absolute address from H'0000 to H'00FF
(0 to 255). Note that the initial part of the area from H'0000 to H'00FF contains the exception
vector table. See the applicable hardware manual for details. The word located at this address
contains the branch address.

If an odd address is specified as a branch destination or as the operand address of a MOV.W
instruction, the least significant bit is regarded as 0, causing word access to be performed at
the address preceding the specified address. See the memory data structure description in
section 1.1.2, Data Structure.

28

Effective Address Calculation

Table 1-11 explains how the effective address is calculated in each addressing mode.

Table 1-11. Effective Address Calculation (1)
No. Addressing mode, instruction format Effective address calculation Effective address
1 Register direct Rn None

OP reg m reg n

reg m
15 8 7 4 3 0

 reg n

3 0 3 0

Operand are contained in

registers m and n

2 Register indirect @Rn

OP reg

15 7 6 4 3 0

Operand is at address

indicated by register

16-bit register contents

15 0

15 0

29

Table 1-11. Effective Address Calculation (2)

No.
Addressing mode, instruction
format

Effective address
calculation

Effective
address

3 Register indirect with displacement
@(d:16, Rn)

16 - bit register contents

+

op reg

disp

15 7 6 4 3 0

15 0

15 0

16 - bit displacement

Operand address is sum

of register contents and

displacement

4 Register indirect with pre-
decrement @-Rn

16 - bit register contents

-

op reg
15 7 6 4 3 0

15 0

15 0

Register is decremented

before operand access1 or 2 *

Register indirect with post-
increment @-Rn+

16 - bit register contents

-

OP reg
15 7 6 4 3 0

15 0 15 0

Register is incremented

after operand access

1 or 2 *

* 1 for a byte operand,

 2 for a word operand

5 Absolute address @aa:8 None

H'FF

OP
15 8 7 0

abs

15 8 7 0

Operand address is in range

from H'FF00 to H'FFFF

Absolute address @aa:16

OP
15 0

15 0

abs

Any address

30

Table 1-11. Effective Address Calculation (3)

No. Addressing mode, instruction format Effective address calculation Effective address

6 Immediate #xx:8. None

OP IMM

15 8 7 0
Operand is 1 - byte

immediate data

Immediate #xx:16 None

OP

IMM

15 0

Operand is 2 - byte

immediate data

7 PC-relative @(d:8, PC)

PC contents

disp
+

OP
15 8 7 0

15 0
15 0

disp
Sign extension Destination address

8 Memory indirect @@aa:8

H'00

OP
15 8 7 0

15 0

abs

16 - bit memory contents

15 8 7 0

Destination address

15 0

rag, regm, regn: General register
op: Operation field
disp: Displacement
abs: Absolute address
IMM: Immediate data

31

Section 2. Instruction Set

2.1 Explanation Format

Section 2 gives full descriptions of all the H8/300L Series instructions, presenting them in
alphabetic order. Each instruction is explained in a table like the following:

ADD (add binary) (byte)

Operation

Rd + (EAs) → Rd

Assembly-Language Format

b ADD.B <EAs>, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 when there is a carry from bit 3; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Set to 1 when there is a carry from bit 7; otherwise cleared to 0.

Description

This instruction adds the source operand to the contents of an 8-bit general register and places
the result in the general register.

32

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte No. of states

Immediate ADD.B #xx:8, Rd 8 rd IMM 2

Register direct ADD.B Rs, Rd 0 8 rs rd 2

The parts of the table are explained below.

Name: The full and mnemonic names of the instruction are given at the top of the page.

Operation: The instruction is described in symbolic notation. The following symbols are
used.

Symbol Meaning
Rd General register (destination)*

Rs General register (source)*

Rn General register*

<EAd> Destination operand

<EAs> Source operand

PC Program counter

SP Stack pointer

CCR Condition code register

N N (negative) flag of CCR

Z Z (zero) flag of CCR

V V (overflow) flag of CCR

C C (carry) flag of CCR

disp Displacement

→ Transfer from left operand to right operand; or state transition from left
state to right state.

+ Addition

- Subtraction

× Multiplication

÷ Division

∧ AND logical

∨ OR logical

⊕ Exclusive OR logical

¬ Inverse logic (logical complement)

() < > Contents of operand effective address
* General registers are either 8 bits (R0H/R0L - R7H/R7L) or 16 bits (R0 - R7).

33

Assembly-Language Format:

The assembly-language coding of the instruction is given. An example is:

ADD. B <EAs>, Rd

Mnemonic Size Source Destination

The operand size is indicated by the letter B (byte) or W (word). Some instructions have
restrictions on the size of operands they handle.

The abbreviation EAs or EAd (effective address of source or destination) is used for operands
that permit more than one addressing mode. The H8/300L CPU supports the following eight
addressing modes. The method of calculating effective addresses is explained in section 1.3.4,
Addressing Modes and Effective Address Calculation, above.

Notation Addressing Mode

Rn Register direct

@Rn Register indirect

@(d: 16, Rn) Register indirect with displacement

@Rn+/@ -Rn Register indirect with post-increment/pre-decrement

@aa:8/@aa:16 Absolute address

#xx:8/#xx:16 Immediate

@(d:8, PC) Program-counter relative

@@aa:8 Memory indirect

Operand size: Word or byte. Byte size is indicated for bit-manipulation instructions because
these instructions access a full byte in order to read or write one bit.

Condition code: The effect of instruction execution on the flag bits in CCR is indicated. The
following notation is used:

Symbol Meaning

∆ The flag is altered according to the result of the instruction.

0 The flag is cleared to "0."

− The flag is not changed.

* Not fixed; the flag is left in an unpredictable state.

Description: The action of the instruction is described in detail.

Instruction Formats: Each possible format of the instruction is shown explicitly, indicating the
addressing mode, the object code, and the number of states required for execution when the

34

instruction and its operands are located in on-chip memory. The following symbols are used:

Symbol Meaning

Imm. Immediate data (3, 8, or 16 bits)

abs. An absolute address (8 bits or 16 bits)

disp. Displacement (8 bits or 16 bits)

rs, rd, rn General register number (3 bits or 4 bits) The s, d, and n correspond to the
letters in the operand notation.

Register Designation: 16-bit general registers are indicated by a 3-bit rs, rd, or rn value. 8-bit
registers are indicated by a 4-bit rs, rd, or rn value. Address registers used in the @Rn,
@(disp:16, Rn), @Rn+, and @-Rn addressing modes are always 16-bit registers. Data registers
are 8-bit or 16-bit registers depending on the size of the operand. For 8-bit registers, the lower
three bits of rs rd, or rn give the register number. The most significant bit is 1 if the lower byte
of the register is used, or 0 if the upper byte is used. Registers are thus indicated as follows:

16-Bit register

Register rs, rd, or rn

0 0 0
0 0 1
:
1 1 1

R0
R1
:
R7

8-Bit registers

rs, rd, or rn Register

0 0 0 0
0 0 0 1
:
0 1 1 1
1 0 0 0
1 0 0 1
:
1 1 1 1

R0H
R1H
:
R7H
R0L
R1L
:
R7L

Bit Data Access: Bit data are accessed as the n-th bit of a byte operand in a general register or
memory. The bit number is given by 3-bit immediate data, or by a value in a general register.
When a bit number is specified in a general register, only the lower three bits of the register are
significant. Two examples are shown below.

35

don't care 0 1 1

Bit number = 3

R1L

R2H 0 1 1 0 0 1 0 1

Bit 3 is set to 1

BSET R1L, R2H

1 0 1 0 0 1 1 0

Loaded to C (carry)

flag in CCR

Bit No. 5

C

H'FF02

BLD # 5, @H'FF02 : 8

The addressing mode and operand size apply to the register or memory byte containing the bit.

Number of States Required for Execution: The number of states indicated is the number
required when the instruction and any memory operands are located in on-chip ROM or RAM. If

36

the instruction or an operand is located in external memory or the on-chip register field,
additional states are required for each access. See section 2.5, Number of Execution States.

2.2 Instructions

2.2.1(1) ADD (add binary) (byte)

Operation

Rd+ (EAs) → Rd

Assembly-Language Format

ADD.B <EAs>, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 when there is a carry from bit 3; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Set to 1 when there is a carry from bit 7; otherwise cleared to 0.

 Description

This instruction adds the source operand to the contents of an 8-bit general register and places
the result in the general register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate ADD.B #xx:8, Rd 8 rd IMM 2

Register direct ADD B Rs, Rd 0 8 rs rd 2

37

2.2.1 (2) ADD (add binary) (word)

Operation

Rd + Rs → Rd

Assembly-Language Format

ADD.W Rs, Rd

Operand Size

Word

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 when there is a carry from bit 11; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Set to 1 when there is a carry from bit 15; otherwise cleared to 0.

 Description

This instruction adds word data in two general registers and places the result in the second
general register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct ADD.W Rs, Rd 0 9 0 rs 0 rd 2

38

2.2.2 ADDS (add with sign extension)

Operation

Rd+1 → Rd

Rd+2 → Rd

Assembly-Language Format

ADDS #1, Rd

ADDS #2, Rd

Operand Size

Word

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

 Description

This instruction adds the immediate value 1 or 2 to word data in a general register. Unlike the
ADD instruction, it does not affect the condition code flags.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register direct ADDS #1, Rd 0 B 0 0 rd 2

Register direct ADDS #2, Rd 0 B 8 0 rd 2

Note: This instruction cannot access byte-size data.

39

2.2.3 ADDX (add with extend carry)

Operation

Rd+(EAs)+C → Rd

Assembly-Language Format

ADDX <EAs>, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 if there is a carry from bit 3; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Set to 1 when there is a carry from bit 7; otherwise cleared to 0.

 Description

This instruction adds the source operand and carry flag to the contents of an 8-bit general
register and places the result in the general register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1 st byte 2nd byte 3rd byte 4th byte

No of
states

Immediate ADDX #xx:8, Rd 9 rd IMM 2

Register direct ADDX Rs, Rd 0 E rs rd 2

40

2.2.4 AND (AND logical)

Operation

Rd ∧ (EAs) → Rd

Assembly-Language Format

AND <EAs>, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

 Description

This instruction ANDs the source operand with the contents of an 8-bit general register and
places the result in the general register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte No of states

Immediate AND #xx:8, Rd E rd IMM 2

Register direct AND Rs, Rd 1 6 rs rd 2

41

2.2.5 ANDC (AND control register)

Operation

CCR ∧ #IMM → CCR

Assembly-Language Format

ANDC #xx:8, CCR

Operand Size

Byte

Condition Code

I H N Z V C

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

I: ANDed with bit 7 of the immediate data.
H: ANDed with bit 5 of the immediate data.
N: ANDed with bit 3 of the immediate data.
Z: ANDed with bit 2 of the immediate data.
V: ANDed with bit 1 of the immediate data.
C: ANDed with bit 0 of the immediate data.

 Description

This instruction ANDs the condition code register (CCR) with immediate data and places the
result in the condition code register. Bits 6 and 4 are ANDed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Immediate ANDC #xx:8, CCR 0 6 IMM 2

42

2.2.6 BAND (bit AND)

Operation

C ∧ (<Bit No.> of <EAd>) → C

Assembly-Language Format

BAND #xx:3, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — ∆

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ANDed with the specified bit.

 Description

This instruction ANDs a specified bit with the carry flag and places the result in the carry flag.
The specified bit can be located in a general register or memory. The bit number is specified by
3-bit immediate data. The operation is shown schematically below.

43

07Bit No.

< CC

#xx:3

<EAd>* → Byte data in register or memory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register direct BAND #xx:3, Rd 7 6 0 IMM rd 2

Register indirect BAND #xx:3,@Rd 7 C 0 rd 0 7 6 0 IMM 0 6

Absolute address BAND #xx:3,@aa:8 7 E abs 7 6 0 IMM 0 6

* Register direct, register indirect, or absolute addressing.

44

2.2.7 Bcc (branch conditionally)

Operation

If cc then PC+d:8 → PC else next;

Assembly-Language Format

Bcc →d:8

Condition code field

(For mnemonics, see the table on the next page.)

Operand Size

−

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

 Description

If the specified condition is false, this instruction does nothing; the next instruction is executed.
If the specified condition is true, a signed displacement is added to the address of the next
instruction and execution branches to the resulting address.

The displacement is a signed 8-bit value which must be even. The branch destination address
can be located in the range − 126 to + 128 bytes from the address of the Bcc instruction.

The applicable conditions and their mnemonics are given below.

45

Mnemonic cc Field Description Condition Meaning

BRA (BT) 0 0 0 0 Always (True) Always true

BRN (BF) 0 0 0 1 Never (False) Never

BHI 0 0 1 0 High C v Z = 0 X > Y (Unsigned)

BLS 0 0 1 1 Low or Same C ∨ Z = 1 X ≤ Y (Unsigned)

BCC (BHS) 0 1 0 0 Carry Clear (High or Same) C = 0 X ≥ Y (Unsigned)

BCS (BLO) 0 1 0 1 Carry Set (Low) C = 1 X < Y (Unsigned)

BNE 0 1 1 0 Not Equal Z = 0 X ≠ Y (Signed or
unsigned)

BEQ 0 1 1 1 Equal Z = 1 X = Y (Signed or
unsigned)

BVC 1 0 0 0 Overflow Clear V = 0

BVS 1 0 0 1 Overflow Set V = 1

BPL 1 0 1 0 Plus N = 0

BMI 1 0 1 1 Minus N = 1

BGE 1 1 0 0 Greater or Equal N ⊕ V = 0 X ≥ Y (Signed)

BLT 1 1 0 1 Less Than N ⊕ V = 1 X < Y (Signed)

BGT 1 1 1 0 Greater Than Z ∨ (N ⊕ V) = 0 X > Y (Signed)

BLE 1 1 1 1 Less or Equal Z ∨ (N ⊕ V) = 1 X ≤ Y (Signed)

BT, BF, BHS, and BLO are synonyms for BRA, BRN, BCC, and BCS, respectively.

46

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte No of states

PC relative BRA (BT) d:8 4 0 disp. 4

PC relative BRN (BF) d:8 4 1 disp. 4

PC relative BHI d:8 4 2 disp. 4

PC relative BLS d:8 4 3 disp. 4

PC relative BCC (BHS) d:8 4 4 disp. 4

PC relative BCS (BLO) d:8 4 5 disp. 4

PC relative BNE d:8 4 6 disp. 4

PC relative BEQ d:8 4 7 disp. 4

PC relative BVC d:8 4 8 disp. 4

PC relative BVS d:8 4 9 disp. 4

PC relative BPL d:8 4 A disp. 4

PC relative BMI d:8 4 B disp. 4

PC relative BGE d:8 4 C disp. 4

PC relative BLT d:8 4 D disp. 4

PC relative BGT d:8 4 E disp. 4

PC relative BLE d:8 4 F disp. 4

* The branch address must be even.

47

2.2.8 BCLR (bit clear)

Operation

0 → (<Bit No.> of <EAd>)

Assembly-Language Format

BCLR #xx:3, <EAd>

BCLR Rn, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

 Description

This instruction clears a specified bit in the destination operand to 0. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of an 8-bit general register. The
destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

48

07Bit No.

#xx:3 or Rn

0
<EAd>* → Byte data in register or memory

* Register direct, register indirect, or absolute addressing.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register direct BCLR #xx:3, Rd 7 2 0 IMM rd 2

Register indirect BCLR #xx:3 @Rd 7 D 0 rd 0 7 2 0 IMM 0 8

Absolute address BCLR #xx:3,@aa:
8

7 F abs 7 2 0 IMM 0 8

Register direct BCLR Rn, Rd 6 2 rn rd 2

Register indirect BCLR Rn, @Rd 7 D 0 rd 0 6 2 rn 0 8

Absolute address BCLR Rn, @aa:8 7 F abs 6 2 rn 0 8

49

2.2.9 BIAND (bit invert AND)

Operation

C ∧ [¬ (<Bit No.> of <EAd>)] → C

Assembly-Language Format

BIAND #xx:3, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — ∆

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ANDed with the inverse of the specified bit.

 Description

This instruction ANDs the inverse of a specified bit with the carry flag and places the result in
the carry flag. The specified bit can be located in a general register or memory. The bit number
is specified by 3-bit immediate data. The operation is shown schematically below.

50

07Bit No.

< CC

#xx:3

Invert

<EAd>* → Byte data in register or memory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register
direct

BIAND #xx:3, Rd 7 6 1 IMM rd 2

Register
indirect

BIAND #xx:3,@Rd 7 C 0 rd 0 7 6 1 IMM 0 6

Absolute
address

BIAND #xx:3,@aa:8 7 E abs 7 6 1 IMM 0 6

* Register direct, register indirect, or absolute addressing.

51

2.2.10 BILD (bit invert load)

Operation

¬ (<Bit No.> of <EAd>) → C

Assembly-Language Format

BILD #xx:3, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — ∆

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Loaded with the inverse of the specified bit.

Description

This instruction loads the inverse of a specified bit into the carry flag. The specified bit can be
located in a general register or memory. The bit number is specified by 3-bit immediate data.
The operation is shown schematically below.

52

07Bit No.

C

#xx:3

invert

<EAd>* → Byte data in register or memory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register direct BILD #xx:3, Rd 7 7 1 IMM rd 2

Register indirect BILD #xx:3,@Rd 7 C 0 rd 0 7 7 1 IMM 0 6

Absolute address BILD #xx:3,@aa:8 7 E abs 7 7 1 IMM 0 6

* Register direct, register indirect, or absolute addressing.

53

2.2.11 BIOR (bit invert inclusive OR)

Operation

C ∨ [¬ (<Bit No.> of <EAd>) → C

Assembly-Language Format

BIOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — ∆

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ORed with the inverse of the specified bit.

 Description

This instruction ORs the inverse of a specified bit with the carry flag and places the result in the
carry flag. The specified bit can be located in a general register or memory. The bit number is
specified by 3-bit immediate data. The operation is shown schematically below.

54

07Bit No.

< CC

#xx:3

Invert

<EAd>* → Byte data in register or memory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register
direct

BIOR #xx:3, Rd 7 4 1 IMM rd 2

Register
indirect

BIOR #xx:3,@Rd 7 C 0 rd 0 7 4 1 IMM 0 6

Absolute
address

BIOR #xx:3,@aa:8 7 E abs 7 4 1 IMM 0 6

* Register direct, register indirect, or absolute addressing.

55

2.2.12 BIST (bit invert store)

Operation

¬ C → (<Bit No.> of <EAd>)

Assembly-Language Format

BIST #xx:3, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction stores the inverse of the carry flag to a specified bit location in a general register
or memory. The bit number is specified by 3-bit immediate data. The operation is shown
schematically below.

56

07Bit No.

C

#xx:3

Invert

<EAd>* → Byte data in register or memory

The values of the unspecified bits are not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register direct BIST #xx:3, Rd 6 7 1 IMM rd 2

Register indirect BIST #xx:3,@Rd 7 D 0 rd 0 6 7 1 IMM 0 8

Absolute address BIST #xx:3, @aa:8 7 F abs 6 7 1 IMM 0 8

* Register direct, register indirect, or absolute addressing.

57

2.2.13 BIXOR (bit invert exclusive OR)

Operation

C ⊕ [← (<Bit No.> of <EAd>)] → C

Assembly-Language Format

BIXOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — ∆
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Exclusive-ORed with the inverse of the specified bit.

Description

This instruction exclusive-ORs the inverse of a specified bit with the carry flag and places the
result in the carry flag. The specified bit can be located in a general register or memory. The bit
number is specified by 3-bit immediate data. The operation is shown schematically below.

58

07Bit No.

CC

#xx:3

Invert

+

<EAd>* → Byte data in register or momory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register direct BIXOR #xx:3, Rd 7 5 1 IMM rd 2

Register indirect BIXOR #xx:3, @Rd 7 C 0 rd 0 7 5 1 IMM 0 6

Absolute address BIXOR #xx:3,
@aa:8

7 E abs 7 5 1 IMM 0 6

* Register direct, register indirect, or absolute addressing.

59

2.2.14 BLD (bit load)

Operation

(<Bit No.> of <EAd>) → C

Assembly-Language Format

BLD #xx:3, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — ∆

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Loaded with the specified bit.

Description

This instruction loads a specified bit into the carry flag. The specified bit can be located in a
general register or memory. The bit number is specified by 3-bit immediate data. The operation
is shown schematically below. The value of the specified bit is not changed.

60

07Bit No.

#xx:3

C

<Ead>*→ Byte data in register or memory

The value of the specified bit is not changed

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register
direct

BLD #xx:3, Rd 7 7 0 IMM rd 2

Register
indirect

BLD #xx:3, @Rd 7 C 0 rd 0 7 7 0 IMM 0 6

Absolute
address

BLD #xx:3,
@aa:8

7 E abs 7 7 0 IMM 0 6

* Register direct, register indirect, or absolute addressing.

61

2.2.15 BNOT (bit NOT)

Operation

¬ (<Bit No.> of <EAd>)

→ (<Bit No.> of <EAd>)

Assembly-Language Format

BNOT #xx:3, <EAd>

BNOT Rn, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction inverts a specified bit in a general register or memory location. The bit number
is specified by 3-bit immediate data, or by the lower three-bits of a general register. The
operation is shown schematically below.

62

07Bit No.

#xx:3 or Rn

Invert
<EAd>*→ Byte data in register or memory

The bit is not tested before being inverted. The condition code flags are not altered.

* Register direct, register indirect, or absolute addressing.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register direct BNOT #xx:3, Rd 7 1 0 IMM rd 2

Register indirect BNOT #xx:3,@Rd 7 D 0 rd 0 7 1 0 IMM 0 8

Absolute address BNOT #xx:3, @aa:8 7 F abs 7 1 0 IMM 0 8

Register direct BNOT Rn, Rd 6 1 rn rd 2

Register indirect BNOT Rn, @Rd 7 D 0 rd 0 6 1 rn 0 8

Absolute address BNOT Rn, @aa:8 7 F abs 6 1 rn 0 8

63

2.2.16 BOR (bit inclusive OR)

Operation

C ∨ (<Bit No.>of <EAd>) → C

Assembly-Language Format

BOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — ∆

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ORed with the specified bit.

Description

This instruction ORs a specified bit with the carry flag and places the result in the carry flag.
The specified bit can be located in a general register or memory. The bit number is specified by
3-bit immediate data. The operation is shown schematically below.

64

07Bit No.

< CC

#xx:3

<EAd>* → Byte data in register or memory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

Register direct BOR #xx:3, Rd 7 4 0 IMM rd 2

Register indirect BOR #xx:3, @Rd 7 C 0 rd 0 7 4 0 IMM 0 6

Absolute address BOR #xx:3,
@aa:8

7 4 abs 7 4 0 IMM 0 6

* Register direct, register indirect, or absolute addressing.

65

2.2.17 BSET (bit set)

Operation

1 → (<Bit No.> of <EAd>)

Assembly-Language Format

BEST #xx:3,<EAd>

BEST Rn,<EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction sets a specified bit in the destination operand to 1. The bit number can be
specified by 3-bit immediate data, or by the lower three-bits of an 8-bit general register. The
destination operand can be located in a general register or memory. The specified bit is not
tested before being cleared. The condition code flags are not altered.

66

07Bit No.

#xx:3 or Rn

1
<EAd>* → Byte data i register or momory

* Register direct, register indirect, or absolute addressing.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct BSET #xx:3, Rd 7 0 0 IMM rd 2

Register indirect BSET #xx:3,
@Rd

7 D 0 rd 0 7 0 0 IMM 0 8

Absolute address BSET #xx:3,
@aa:8

7 F abs 7 0 0 IMM 0 8

Register direct BSET Rn, Rd 6 0 rn rd 2

Register indirect BSET Rn, @Rd 7 D 0 rd 0 6 0 rn 0 8

Absolute address BSET Rn, @aa:8 7 F abs 6 0 rn 0 8

67

2.2.18 BSR (branch to subroutine)

Operation

PC → @−SP

PC + d:8 → PC

Assembly-Language Format

BSR d:8

Operand Size

−

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction pushes the program counter (PC) value onto the stack, then adds a specified
displacement to the program counter value and branches to the resulting address. The program
counter value used is the address of the instruction following the BSR instruction.

The displacement is a signed 8-bit value which must be even. The possible branching range is −
126 to +128 bytes from the address of the BSR instruction.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No of
states

PC-relative BSR d:8 5 5 disp 6

68

2.2.19 BST (bit store)

Operation

C → (<Bit No.> of <EAd>)

Assembly-Language Format

BST #xx:3, <EAd>

Operand Size:

Byte

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction stores the carry flag to a specified flag location in a general register or memory.
The bit number is specified by 3-bit immediate data. The operation is shown schematically
below.

69

07Bit No.

#xx:3

C

<EAd>* → Byte data in register or memory

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct BST #xx:3, Rd 6 7 0 IMM rd 2

Register indirect BST #xx:3,
@Rd

7 D 0 rd 0 6 7 0 IMM 0 8

Absolute address BST #xx:3,
@aa:8

7 F abs 6 7 0 IMM 0 8

* Register direct, register indirect, or absolute addressing.

70

2.2.20 BTST (bit test)

Operation

¬ (<Bit No.> of <EAd>) → Z

Assembly-Language Format

BTST #xx:3, <EAd>

BTST Rn, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — ∆ — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Set to 1 when the specified bit is zero; otherwise cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction tests a specified bit in a general register or memory location and sets or clears
the Zero flag accordingly. The bit number can be specified by 3-bit immediate data, or by the
lower three bits of an 8-bit general register. The operation is shown schematically below.

71

07Bit No.

#xx:3 or Rn

Test
<EAD>* → Byte data in register or memory

The value of the specified bit is not altered.

* Register direct, register indirect, or absolute addressing.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct BTST #xx:3, Rd 7 3 0 IMM rd 2

Register indirect BTST #xx:3,
@Rd

7 C 0 rd 0 7 3 0 IMM 0 6

Absolute address BTST #xx:3,
@aa:8

7 E abs 7 3 0 IMM 0 6

Register direct BTST Rn, Rd 6 3 rn rd 2

Register indirect BTST Rn, @Rd 7 C 0 rd 0 6 3 rn 0 6

Absolute address BTST Rn, @aa:8 7 E abs 6 3 rn 0 6

72

2.2.21 BXOR (bit exclusive OR)

Operation

C ⊕ (<Bit No.> of <EAd>) → C

Assembly-Language Format

BXOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — ∆

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Exclusive-ORed with the specified bit.

Description

This instruction exclusive-ORs a specified bit with the carry flag and places the result in the
carry flag. The specified bit can be located in a general register or memory. The bit number is
specified by 3-bit immediate data. The operation is shown schematically below.

73

07Bit No.

CC

#xx:3

+

<EAd>* → Byte data in register or memory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register
direct

BXOR #xx:3, Rd 7 5 0 IMM rd 2

Register
indirect

BXOR #xx:3, @Rd 7 C 0 rd 0 7 5 0 IMM 0 6

Absolute
address

BXOR #xx:3,
@aa:8

7 E abs 7 5 0 IMM 0 6

* Register direct, register indirect, or absolute addressing.

74

2.2.22 (1) CMP (compare) (byte) CMP

Operation

Rd − (EAs); set condition code

Assembly-Language Format

CMP.B <EAs>, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 when there is a borrow from bit 3; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Set to 1 when there is a borrow from bit 7; otherwise cleared to 0.

Description

This instruction subtracts an 8-bit source register or immediate data from an 8-bit destination
register and sets the condition code flags according to the result. The destination register is not
altered.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate CMP.B #xx:8, Rd A rd IMM 2

Register direct CMP.B Rs, Rd 1 C rs rd 2

75

2.2.22 (2) CMP (compare) (word)

Operation

Rd − Rs; set condition code

Assembly-Language Format

CMP.W Rs, Rd

Operand Size

Word

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 when there is a borrow from bit 11; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Set to 1 when there is a borrow from bit 15; otherwise cleared to 0.

Description

This instruction subtracts a source register from a destination register and sets the condition code
flags according to the result. The destination register is not altered.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct CMP.W Rs, Rd 1 D 0 rs 0 rd 2

76

2.2.23 DAA (decimal adjust add)

Operation

Rd (decimal adjust) → Rd

Assembly-Language Format

DAA Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — * — ∆ ∆ * ∆

I: Previous value remains unchanged.
H: Unpredictable
N: Set to 1 when the adjusted result is negative; otherwise cleared to 0.
Z: Set to 1 when the adjusted result is zero; otherwise cleared to 0.
V: Unpredictable.
C: Set to 1 when there is a carry from bit 7; otherwise left unchanged.

Description

When the result of an addition operation performed by the ADD.B or ADDX instruction on 4-bit
BCD data is contained in an 8-bit general register and the carry and half-carry flags, the DAA
instruction adjusts the result by adding H'00, H'06, H'60, or H'66 to the general register
according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those
stated above.

77

Status before adjustment

C flag Upper nibble H flag Lower nibble Value added Resulting C flag

0 0 - 9 0 0 - 9 H'00 0

0 0 - 8 0 A - F H'06 0

0 0 - 9 1 0 - 3 H'06 0

0 A - F 0 0 - 9 H'60 1

0 9 - F 0 A - F H'66 1

0 A - F 1 0 - 3 H'66 1

1 0 - 2 0 0 - 9 H'60 1

1 0 - 2 0 A - F H'66 1

1 0 - 3 1 0 - 3 H'66 1

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct DAA Rd 0 F 0 rd 2

78

2.2.24 DAS (decimal adjust subtract)

Operation

Rd (decimal adjust) → Rd

Assembly-Language Format

DAS Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — * — ∆ ∆ * —
I: Previous value remains unchanged.
H: Unpredictable.
N: Set to 1 when the adjusted result is negative; otherwise cleared to 0.
Z: Set to 1 when the adjusted result is zero; otherwise cleared to 0.
V: Unpredictable.
C: Previous value remains unchanged.

Description

When the result of a subtraction operation performed by the SUB.B, SUBX, or NEG instruction
on 4-bit BCD data is contained in an 8-bit general register and the carry and half-carry flags, the
DAA instruction adjusts the result by adding H'00, H'FA, H'A0, or H'9A to the general register
according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those
stated above.

Status before adjustment

 C flag Upper nibble H flag Lower nibble Value added Resulting C flag

0 0 - 9 0 0 - 9 H'00 0

0 0 - 8 1 6 - F H'FA 0

1 7 - F 0 0 - 9 H'A0 1

1 6 - F 1 6 - F H'9A 1

Instruction Formats and Number of Execution States
Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct DAS Rd 1 F 0 rd 2

79

2.2.25 DEC (decrement)

Operation

Rd - 1 → Rd

Assembly-Language Format

DEC Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ ∆ —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to I when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs (the previous value in Rd was H'80); otherwise cleared

to 0.
C: Previous value remains unchanged.

Description

This instruction decrements an 8-bit general register and places the result in the general register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct DEC Rd 1 A 0 rd 2

80

2.2.26 DIVXU (divide extend as unsigned)

Operation

Rd ÷ Rs → Rd

Assembly-Language Format

DIVXU Rs, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to I when the divisor is negative; otherwise cleared to 0.
Z: Cleared to 0 when divisor ≠ 0; otherwise not guaranteed.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction divides a 16-bit general register by an 8-bit general register and places the result
in the 16-bit general register. The quotient is placed in the lower byte. The remainder is placed
in the upper byte. The operation is shown schematically below.

Rd Rs (RdH) (RdL)
Dividend + Divisor Remainder Quotient
16 bits 8 bits 8 bits 8 bits

{ Rd

Valid results (Kd, N, Z) are not assured if division by zero is attempted or an overflow occurs.
Division by zero is indicated in the Zero flag. Overflow can be avoided by the coding shown on
the next page.

81

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct DIVXU Rs, Rd 5 1 rs 0 rd 14

Note: DIVXU Overflow

Since the DIVXU instruction performs 16-bit ÷ 8-bit → 8-bit division, an overflow will occur if
the divisor byte is equal to or less than the upper byte of the dividend. For example, H'FFFF ÷
H'01 → H'FFFF causes an overflow. (The quotient has more than 8 bits.)

Overflows can be avoided by using a subprogram like the following. A work register is required.

To perform

DIVXU R0L, R1:

MOV.B #H'00, R2H

CMP.B R0L, R1H

BCC L1

DIVXU R0L, R1 (*1)

MOV.B R1L, R2L

BRA L2

L1 MOV.B R1H, R2L (*2)

DIVXU R0L, R2

MOV.B R2H, R1H (*3)

DIVXU R0L, R1

MOV.B R2L, R2H

MOV.B R1L, R2L

L2 RTS (*4)

82

R0L Divisor

R1 Dividend

R1 Remainder Quotient (*1)

R1 Dividend

R2 H'00 Dividend (High) (*2)

R1 Partial remainder Dividend (Low)

R2 Partial remainder Quotient (High) (*3)

R1 Remainder Quotient (Low)

R2 											 													Quotient (*4)

83

2.227 EEPMOV (move date to EEPROM)

Operation

if R4L ≠ 0 then
repeat @R5+ → @R6+

R4L − 1 → R4L
until R4L = O

else next;

Assembly-Language Format

EEPMOV

Operand Size



Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction moves a block of data from the memory location specified in general register R5
to the memory location specified in general register R6. General register R4L gives the byte
length of the block.

Data are transferred a byte at a time. After each byte transfer, R5 and R6 are incremented and
R4Lis decremented. When R4L reaches 0, the transfer ends and the next instruction is executed.
No interrupt requests are accepted during the data transfer.

At the end of this instruction, R4L contains H'OO. R5 and R6 contain the last transfer address
+1.

The memory locations specified by general registers R5 and R6 are read before the block
transfer is performed.

84

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

 EEPMOV 7 B 5 C 5 9 8 F 9+4n*

* n is the initial value in R4L (0 ≤ n ≤ 255). Although n bytes of data are transferred, memory
is accessed 2(n+1) times, requiring 4(n+1) states.

85

2.2.28 INC (increment

Operation

Rd + 1 → Rd

Assembly-Language Format

INC Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ ∆ —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs (the previous value in Rd was H'7F); otherwise cleared

to 0.
C: Previous value remains unchanged.

Description

This instruction increments an 8-bit general register and places the result in the general register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte No. of states

Register direct INC Rd 0 A 0 rd 2

86

2.2.29 JMP (jump)

Operation

(EAd) → PC

Assembly-Language Format

JMP <EA>

Operand Size



Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction branches unconditionally to a specified destination address.

The destination address must be even.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register indirect JMP @Rn 5 9 0 rn 0 4

Absolute address JMP @aa:16 5 A 0 0 abs. 6

Memory indirect JMP @@aa:8 5 B abs. 8

87

2.2.30 JSR (Jump to subroutine)

Operation

PC → @−SP

(EAd) → PC

Assembly-Language Format

JSR <EA>

Operand Size



Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction pushes the program counter onto the stack, then branches to a specified
destination address. The program counter value pushed on the stack is the address of the
instruction following the JSR instruction. The destination address must be even.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register indirect JSR @Rn 5 D 0 rn 0 6

Absolute address JSR @aa:16 5 E 0 0 abs. 8

Memory indirect JSR @@aa:8 5 F abs. 8

88

2.2.31 LDC (load to control register)

Operation

(EAs) → CCR

Assembly-Language Format

LDC <EAs>, CCR

Operand Size

Byte

Condition Code

I H N Z V C

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

I: Loaded from the source operand.
H: Loaded from the source operand.
N: Loaded from the source operand.
Z: Loaded from the source operand.
V: Loaded from the source operand.
C: Loaded from the source operand.

Description

This instruction loads the source operand contents into the condition code register (CCR). Bits 4
and 6 are loaded as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are deferred
until after the next instruction.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate LDC #xx:8, CCR 0 7 IMM 2

Register direct LDC Rs, CCR 0 3 0 rs 2

89

2.2.32 (1) MOV (move data) (byte)

Operation

Rs → Rd

Assembly-Language Format

MOV.B Rs, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the data value is negative; otherwise cleared to 0.
Z: Set to 1 when the data value is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction moves one byte of data from a source register to a destination register and sets
condition code flags according to the data value.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct MOV.B Rs, Rd 0 C rs rd 2

90

2.2.32(2) MOV (move data) (word)

Operation

Rs → Rd

Assembly-Language Format

MOV.W Rs, Rd

Operand Size

Word

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the data value is negative; otherwise cleared to 0.
Z: Set to 1 when the data value is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction moves one word of data from a source register to a destination register and sets
condition code flags according to the data value.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct MOV.W RS, Rd 0 D 0 rs 0 rd 2

91

2.2.32(3) MOV (move data) (byte)

Operation

(EAs) → Rd

Assembly-Language Format

MOV.B <EAs>, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the data value is negative; otherwise cleared to 0.
Z: Set to 1 when the data value is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction moves one byte of data from a source operand to a destination register and sets
condition code flags according to the data value.

The MOV.B @R7+, Rd instruction should never be used, because it leaves an odd value in the
stack pointer. See section 3.2.3 for details.

92

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate MOV.B #xx:8, Rd F rd IMM 2

Register indirect MOV.B @RS, Rd 6 8 0 rs rd 4

Register indirect
with displacement

MOV.B @(d:16, Rs),
Rd

6 E 0 rs rd disp. 6

Register indirect
with post-
increment

MOV.B @Rs+, Rd 6 C 0 rs rd 6

Absolute address MOV.B @aa:8, Rd 2 rd abs 4

Absolute address MOV.B @aa:16, Rd 6 A 0 rd abs. 6

93

2.2.32(4) MOV (move data) (word)

Operation

(EAs) → Rd

Assembly-Language Format

MOV .W <EAs>, Rd

Operand Size

Word

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the data value is negative; otherwise cleared to 0.
Z: Set to 1 when the data value is zero;otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction moves one word of data from a source operand to a destination register and sets
condition code flags according to the data value.

If the source operand is in memory, it must be located at an even address.

MOV.W @R7+, Rd is identical in machine language to POP.W Rd.

Note that the LSIs in the H8/300L Series contain on-chip peripheral modules for which access in
word size is not possible. Details are given in the applicable hardware manual.

94

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate MOV.W #xx:16, Rd 7 9 0 0 rd IMM 4

Register indirect MOV.W @RS, Rd 6 9 0 rs 0 rd 4

Register indirect
with displacement

MOV.W @(d:16,Rs),Rd 6 F 0 rs 0 rd disp. 6

Register indirect
with post-
increment

MOV.W @Rs+, Rd 6 D 0 rs 0 rd 6

Absolute address MOV.W @aa:16, Rd 6 B 0 0 rd abs. 6

95

2.2.32(5) MOV (move) data) (byte)

Operation

Rs → (EAd)

Assembly-Language Format

MOV .B Rs, <EAd>

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the data value is negative; otherwise cleared to 0.
Z: Set to I when the data value is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction moves one byte of data from a source register to memory and sets condition
code flags according to the data value.

The MOV.B Rs, @-R7 instruction should never be used, because it leaves an odd value in the
stack pointer. See section 3.2.3 for details.

The instruction MOV.B RnH, @-Rn or MOV.B RnL, @-Rn decrements register Rn, then moves
the upper or lower byte of the decremented result to memory.

Instruction Formats and Number of Execution States

Instruction code

Addressing mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte
No. of
states

Register indirect MOV.B Rs, @Rd 6 8 1 rd rs 4

Register indirect
with displacement

MOV.B Rs,@(d:16,Rd) 6 E 1 rd rs disp. 6

Register indirect
with pre-decrement

MOV.B Rs, @-Rd 6 C 1 rd rs 6

Absolute address MOV.B Rs,@aa:8 3 rs abs 4

Absolute address MOV.B Rs,@aa:16 6 A 8 rs abs. 6

96

2.2.32(6) MOV (move data) (word)

Operation

Rs → (EAd)

Assembly-Language Format

MOV .W Rs, <EAd>

Operand Size

Word

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the data value is negative; otherwise cleared to 0.
Z: Set to 1 when the data value is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction moves one word of data from a general register to memory and sets condition
code flags according to the data value.

The destination address in memory must be even.

MOV.W Rs, @-R7 is identical in machine language to PUSH.W Rs.

The instruction MOV.W Rn, @-Rn decrements register Rn by 2, then moves the decremented
result to memory.

Note that the LSIs in the H8/300L Series contain on-chip peripheral modules for which access in
word size is not possible. Details are given in the applicable hardware manual.

97

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register indirect MOV.W Rs, @Rd 6 9 1 rd 0 rs 4

Register indirect
with displacement

MOV.W Rs,@(d:16,
Rd)

6 F 1 rd 0 rs disp. 6

Register indirect
with pre-
decrement

MOV.W Rs,@-Rd 6 D 1 rd 0 rs 6

Absolute address MOV.W Rs,@aa:16 6 B 8 0 rs abs. 6

98

2.2.33 MULXU (multiply extend as unsigned)

Operation

Rd × Rs → Rd

Assembly-Language Format

MULXU Rs, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction performs 8-bit × 8-bit → 16-bit multiplication. It multiplies a destination
register by a source register and places the result in the destination register. The source register
is an 8-bit register. The destination register is a 1 6-bit register containing the data to be
multiplied in the lower byte. (The upper byte is ignored). The result is placed in both bytes of
the destination register. The operation is shown schematically below.

Don't - care Multiplicand X Multiplier Product

Rd Rs Rd

8 bits 8 bits 16 bits

The multiplier can occupy either the upper or lower byte of the source register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct MULXU Rs,Rd 5 0 rs 0 rd 14

99

2.2.34 NEG (negate)

Operation

0 - Rd → Rd

Assembly-Language Format

NEG Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 when there is a borrow from bit 3; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs (the previous contents of the destination register was

H'80); otherwise cleared to 0.
C: Set to 1 when there is a borrow from bit 7 (the previous contents of the destination register

was not H'00); otherwise cleared to 0.

Description

This instruction replaces the contents of an 8-bit general register with its two's complement
(subtracts the register contents from H'00).

If the original contents of the destination register was H'80, the register value remains H'80 and
the overflow flag is set.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct NEG Rd 1 7 8 rd 2

100

2.2.35 NOP (no operation)

Operation

PC + 2 → PC

Assembly-Language Format

NOP

Operand Size



Condition Code

I H N Z V

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction only increments the program counter, causing the next instruction to be
executed. The internal state of the CPU does not change.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

 NOP 0 0 0 0 2

101

2.2.36 NOT (NOT = logical complement)

Operation

¬ Rd → Rd

Assembly-Language Format

NOT Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction replaces the contents of an 8-bit general register with its one's complement
(subtracts the register contents from H'FF).

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register
direct

NOT Rd 1 7 0 rd 2

102

2.2.37 OR (inclusive OR logical)

Operation

Rd ∨ (EAs) → Rd

Assembly-Language Format

OR <EAs>, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction ORs the source operand with the contents of an 8-bit general register and places
the result in the general register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate OR #xx:8, Rd C rd IMM 2

Register direct OR Rs, Rd 1 4 rs rd 2

103

2.2.38 ORC (inclusive OR control register)

Operation

CCR ∨ #IMM → CCR

Assembly-Language Format

ORC #xx:8, CCR

Operand Size

Byte

Condition Code

I H N Z V C

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

I: ORed with bit 7 of the immediate data.
H: ORed with bit 5 of the immediate data.
N: ORed with bit 3 of the immediate data.
Z: ORed with bit 2 of the immediate data.
V: ORed with bit 1 of the immediate data.
C: ORed with bit 0 of the immediate data.

Description

This instruction ORs the condition code register (CCR) with immediate data and places the
result in the condition code register. Bits 6 and 4 are ORed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are deferred
until after the next instruction.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate ORC #xx:8, CCR 0 4 IMM 2

104

2.2.39 POP (pop data)

Operation

@SP+ → Rn

Assembly-Language Format

POP Rn

Operand Size

Word

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the data value is negative; otherwise cleared to 0.
Z: Set to 1 when the data value is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction pops data from the stack to a 16-bit general register and sets condition code
flags according to the data value.

POP.W Rn is identical in machine language to MOV.W @SP+, Rn.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

 POP Rd 6 D 7 0 rn 6

105

2.2.40 PUSH (push data)

Operation

Rn → @-SP

Assembly-Language Format

PUSH Rn

Operand Size

Word

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the data value is negative; otherwise cleared to 0.
Z: Set to 1 when the data value is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction pushes data from a 16-bit general register onto the stack and sets condition code
flags according to the data value.

PUSH.W Rn is identical in machine language to MOV.W Rn, @-SP.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1 st byte 2nd byte 3rd byte 4th byte

No. of
states

 PUSH Rs 6 D F 0 rn 6

106

2.2.41 ROTL (rotate left)

Operation

Rd (rotated left) → Rd

Assembly-Language Format

ROTL Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 7.

Description

This instruction rotates an 8-bit general register one bit to the left. The most significant bit is
rotated to the least significant bit, and also copied to the carry flag.

The operation is shown schematically below.

C Bit 7 Bit 0

MSB LSB

Instruction Formats and Number of Execution States

Instruction code
Addressing
mode Mnem. Operands 1 st byte 2nd byte 3rd byte 4th byte

No of
states

Register direct ROTL Rd 1 2 8 rd 2

107

2.2.42 ROTR (rotate right)

Operation

Rd (rotated right) → Rd

Assembly-Language Format
ROTR Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to I when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 0.

Description

This instruction rotates an 8-bit general register one bit to the right. The least significant bit is
rotated to the most significant bit, and also copied to the carry flag.

The operation is shown schematically below.

 Bit 7 Bit 0 C

MSB LSB

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct ROTR Rd 1 3 8 rd 2

108

2.2.43 ROTXL (rotate with extend carry left)

Operation

Rd (rotated with carry left) → Rd

Assembly-Language Format

ROTXL Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 7.

Description

This instruction rotates an 8-bit general register one bit to the left through the carry flag. The
carry flag is rotated into the least significant bit of the register. The most significant bit rotates
into the carry flag.

The operation is shown schematically below.

C Bit 7 Bit 0

MSB LSB

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register
direct

ROTXL Rd 1 2 0 rd 2

109

2.2.44 ROTXR (rotate with extend carry right)

Operation

Rd (rotated with carry right) → Rd

Assembly-Language Format

ROTXR Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 0.

Description

This instruction rotates an 8-bit general register one bit to the right through the carry flag. The
least significant bit is rotated into the carry flag. The carry flag rotates into the most significant
bit.

The operation is shown schematically below.

Bit 7 Bit 0 C

MSB LSB

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct ROTXR Rd 1 3 0 rd 2

110

2.2.45 RTE (return from exception)

Operation

@SP + → CCR

@SP + → PC

Assembly-Language Format

RTE

Operand Size



Condition Code

I H N Z V C

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

I: Restored from stack.
H: Restored from stack.
N: Restored from stack.
Z: Restored from stack.
V: Restored from stack.
C: Restored from stack.

Description

This instruction returns from an exception-handling routine. It pops the condition code register
(CCR) and program counter (PC) from the stack. Program execution continues from the address
restored to the program counter.

The CCR and PC contents at the time of execution of this instruction are lost.

The CCR is one byte in size, but it is popped from the stack as a word (in which the lower 8 bits
are ignored). This instruction therefore adds 4 to the value of the stack pointer (R7).

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

 RTE 5 6 7 0 10

111

2.2.46 RTS (return from subroutine)

Operation

@SP + → PC

Assembly-Language Format

RTS

Operand Size



Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction returns from a subroutine. It pops the program counter (PC) from the stack.
Program execution continues from the address restored to the program counter.

The PC contents at the time of execution of this instruction are lost.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

 RTS 5 4 7 0 8

112

2.2.47 SHAL (shift arithmetic left)

Operation

Rd (shifted arithmetic left) → Rd

Assembly-Language Format
SHAL Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Receives the previous value in bit 7.

Description

This instruction shifts an 8-bit general register one bit to the left. The most significant bit shifts
into the carry flag, and the least significant bit is cleared to 0.

The operation is shown schematically below.

C Bit 7 Bit 0

MSB LSB

0

The SHAL instruction is identical to the SHLL instruction except for its effect on the overflow
(V) flag.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct SHAL Rd 1 0 8 rd 2

113

2.2.48 SHAR (shift arithmetic right)

Operation

Rd (shifted arithmetic right) → Rd

Assembly-Language Format

SHAR Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 0.

Description

This instruction shifts an 8-bit general register one bit to the right. The most significant bit
remains unchanged. The sign of the result does not change. The least significant bit shifts into
the carry flag.

The operation is shown schematically below.

Bit 7 Bit 0 C

MSB LSB

114

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct SHAR Rd 1 1 8 rd 2

115

2.2.49 SHLL (shift logical left)

Operation

Rd (shifted logical left) → Rd

Assembly-Language Format

SHLL Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 0.

Description

This instruction shifts an 8-bit general register one bit to the left. The least significant bit is
cleared to 0. The most significant bit shifts into the carry flag.

The operation is shown schematically below.

C Bit 7 Bit 0

MSB LSB

0

The SHLL instruction is identical to the SHAL instruction except for its effect on the overflow
(V) flag.

116

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register
direct

SHLL Rd 1 0 0 rd 2

117

2.2.50 SHLR (shift logical right)

Operation

Rd (shifted logical right) → Rd

Assembly-Language Format

SHLR Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 0.

Description

This instruction shifts an 8-bit general register one bit to the right. The most significant bit is
cleared to 0. The least significant bit shifts into the carry flag.

The operation is shown schematically below.

Bit 7 Bit 0 C

MSB LSB

0

118

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register
direct

SHLR Rd 1 1 0 rd 2

119

2.2.51 SLEEP (sleep)

Operation

Program execution state → power-down mode

Assembly-Language Format

SLEEP

Operand Size



Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

When the SLEEP instruction is executed, the CPU enters a power-down mode. Its internal state
remains unchanged, but the CPU stops executing instructions and waits for an exception-
handling request (interrupt or reset). When it receives an exception-handling request, the CPU
exits the power-down mode and begins the exception-handling sequence.

If the interrupt mask (I) bit is set to 1, the power-down mode can be released only by a
nonmaskable interrupt (NMI) or reset.

For information about the power-down modes, see the applicable hardware manual.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

 SLEEP 0 1 8 0 2

120

2.2.52 STC (store from control register)

Operation

CCR → Rd

Assembly-Language Format

STC CCR, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction copies the condition code register (CCR) to a specified general register. Bits 6
and 4 are copied as well as the flag bits.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1 st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct STC CCR, Rd 0 2 0 rd 2

121

2.2.53(1) SUB (subtract binary) (byte)

Operation

Rd - Rs → Rd

Assembly-Language Format

SUB.B Rs, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 when there is a borrow from bit 3; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Set to 1 when there is a borrow from bit 7; otherwise cleared to 0.

Description

This instruction subtracts an 8-bit source register from an 8-bit destination register and places
the result in the destination register.

Only register direct addressing is supported. To subtract immediate data it is necessary to use the
SUBX.B instruction, first setting the zero flag to 1 and clearing the carry flag to 0.

The following codings can also be used to subtract nonzero immediate data.

(1) ORC #H'05, CCR
SUBX #(Imm - 1), Rd

(2)ADD #(0 - Imm), Rd
XORC #H'01, CCR

122

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct SUB.B Rs, Rd 1 8 rs rd 2

123

2.2.53(2) SUB (subtract binary) (word)

Operation

Rd - Rs → Rd

Assembly - Language Format

SUB.W Rs, Rd

Operand Size

Word

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 when there is a borrow from bit 11; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Set to 1 when there is a borrow from bit 15; otherwise cleared to 0.

Description

This instruction subtracts a 16-bit source register from a 16-bit destination register and places
the result in the destination register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct SUB.W Rs, Rd 1 9 0 rs 0 rd 2

124

2.2.54 SUBS (subtract with sign extension)

Operation

Rd - 1 → Rd

Rd - 2 → Rd

Assembly-Language Format

SUBS #1, Rd

SUBS #2, Rd

Operand Size

Word

Condition Code

I H N Z V C

— — — — — — — —
I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction subtracts the immediate value 1 or 2 from word data in a general register.
Unlike the SUB instruction, it does not affect the condition code flags.

The SUBS instruction does not permit byte operands.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1 st byte 2nd byte 3rd byte 4th byte

No. of
states

Register direct SUBS #1, Rd 1 B 0 0 rd 2

Register direct SUBS #2, Rd 1 B 8 0 rd 2

125

2.2.55 SUBX (subtract with extend carry)

Operation

Rd - (EAs) - C → Rd

Assembly-Language Format

SUBX <EAs>, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — ∆ — ∆ ∆ ∆ ∆

I: Previous value remains unchanged.
H: Set to 1 if there is a borrow from bit 3; otherwise cleared to 0.
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Previous value remains unchanged when the result is zero; otherwise cleared to 0.
V: Set to 1 when an overflow occurs; otherwise cleared to 0.
C: Set to 1 when there is a borrow from bit 7; otherwise cleared to 0.

Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit general
register and places the result in the general register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate SUBX #xx:8, Rd B rd IMM 2

Register direct SUBX Rs, Rd 1 E rs rd 2

126

2.2.56 XOR (exclusive OR logical)

Operation

Rd ⊕ (Eas) → Rd

Assembly-Language Format

XOR <Eas>, Rd

Operand Size

Byte

Condition Code

I H N Z V C

— — — — ∆ ∆ 0 —
I: Previous value remains unchanged.
H: Previous value remains unchanged,
N: Set to 1 when the result is negative; otherwise cleared to 0.
Z: Set to 1 when the result is zero; otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.

Description

This instruction exclusive-ORs the source operand with the contents of an 8-bit general register
and places the result in the general register.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate XOR #xx:8, Rd D rd IMM 2

Register direct XOR Rs, Rd 1 5 rs rd 2

127

2.2.57 XORC (exclusive OR control register)

Operation

CCR ⊕ #IMM → CCR

Assembly-Language Format

XORC #xx:8, CCR

Operand Size

Byte

Condition Code

I H N Z V C

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

I: Exclusive-ORed with bit 7 of the immediate data.
H: Exclusive-ORed with bit 5 of the immediate data.
N: Exclusive-ORed with bit 3 of the immediate data.
Z: Exclusive-ORed with bit 2 of the immediate data.
V: Exclusive-ORed with bit 1 of the immediate data.
C: Exclusive-ORed with bit 0 of the immediate data.

Description

This instruction exclusive-ORs the condition code register (CCR) with immediate data and
places the result in the condition code register. Bits 6 and 4 are exclusive-ORed as well as the
flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

Instruction code

Addressing
mode Mnem. Operands 1st byte 2nd byte 3rd byte 4th byte

No. of
states

Immediate XORC #xx:8, CCR 0 5 IMM 2

128

2.3 Operation Code Map

Table 2-1 shows the operation code map for instructions of the H8/300L CPU. Only the first
byte (bits 15 to 8 of the first word) of the instruction code is indicated here.

Indicates that the most significant bit of the 2nd byte
(bit 7 of 1st word of instruction code) is 0.

Indicates that the most significant bit of the 2nd byte
(bit 7 of 1st word of instruction code) is 1.

129

Table 2-1. Operation Code Map

��
�����
���

H
I

LO
0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

N
O

P

B
R

A

M
U

LX
U

B
S

E
T

S
H

LL S
H

A
L

S
LE

E
P

B
R

N

D
IV

X
U

B
N

O
T

S
H

LR S
H

A
R

S
T

C

B
H

I

B
C

LR

R
O

TX
L

R
O

T
L

LD
C

B
LS

B
T

S
T

R
O

TX
R

R
O

T
R

O
R

C

O
R

B
C

C

R
T

S

X
O

R
C

X
O

R

B
C

S

B
S

R

B
O

R B
IO

R

B
X

O
R

B
IX

O
R

B
A

N
D

B
IA

N
D

A
N

D
C

A
N

D

B
N

E

R
T

E

LD
C

B
E

Q

N
O

T N
E

G

B
LD

B
IL

D

B
S

T B
IS

T

A
D

D

S
U

B

B
V

C
B

V
S

M
O

V

IN
C

D
E

C

B
P

L

JM
P

A
D

D
S

S
U

B
S

B
M

I

E
E

P
M

O
V

M
O

V

C
M

P

B
G

E
B

LT

A
D

D
X

S
U

B
X

B
G

T

JS
R

D
A

A

D
A

S

B
LE

M
O

V

A
D

D

A
D

D
X

C
M

P

S
U

B
X

O
R

X
O

R

A
N

D

M
O

V

M
O

V
*���

T
he

 P
U

S
H

 a
nd

 P
O

P
 in

st
ru

ct
io

ns
 a

re
 e

qu
iv

al
en

t i
n

m
ac

hi
ne

 la
ng

ua
ge

 to
 th

e
M

O
V

 in
st

ru
ct

io
n.

 S
ee

 th
e

de
sc

rip
tio

ns
 o

f i
nd

iv
id

ua
l i

ns
tr

uc
tio

ns
 in

 s
ec

tio
n

2.
2,

 In
st

ru
ct

io
ns

, f
or

 d
et

ai
ls

.
N

ot
e:

B
it

m
an

ip
ul

at
io

n
in

st
ru

ct
io

ns

130

2.4 List of Instructions

Table 2-2. List of Instructions (1)

Addressing Mode and
Instruction Length (Bytes)

Mnemonic

O
p

er
an

d
 S

iz
e

Operation #x
x:

 8
/1

6

R
n

@
R

n

@
(d

:1
6,

R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

Im
p

lie
d

Condition Code

N
o

. o
f

S
ta

te
s

I H N Z V0 C

MOV.B #xx:8,Rd B #xx:8→Rd8 2 -- --- ∆ ∆ 0 -- 2

MOV.B Rs,Rd B Rs8→Rd8 2 -- -- ∆ ∆ 0 -- 2

MOV.B @Rs,Rd B @Rs16→Rd8 2 -- -- ∆ ∆ 0 -- 4

MOV.B @(d:16,Rs),Rd B @(d:16,Rs16)→Rd8 4 -- -- ∆ ∆ 0 -- 6

MOV.B @Rs+,Rd B @Rs16→Rd8
Rs16+1→Rs16

2 -- -- ∆ ∆ 0 -- 6

MOV.B @aa 8,Rd B @aa:8→Rd8 2 -- -- ∆ ∆ 0 -- 4

MOV.B@aa:16,Rd B @aa:16→Rd8 4 -- -- ∆ ∆ 0 -- 6

MOV.B Rs,@Rd B Rs8→@Rd16 2 -- -- ∆ ∆ 0 -- 4

MOV.B Rs,@(d:16,Rd) B Rs8→@(d:16,Rd16) 4 -- -- ∆ ∆ 0 -- 6

MOV.B Rs,@-Rd B Rd16-1→Rd16
Rs8→@Rd16

2 -- -- ∆ ∆ 0 -- 6

MOV.B Rs,@aa-8 B Rs8→@aa:8 2 -- -- ∆ ∆ 0 -- 4

MOV.B Rs,@aa 16 B Rs8→@aa:16 4 -- -- ∆ ∆ 0 -- 6

MOV.W #xx:16.Rd W #xx:16→RD 4 -- -- ∆ ∆ 0 -- 4

MOV.W Rs,Rd W Rs16→Rd16 2 -- -- ∆ ∆ 0 -- 2

MOV.W@Rs,Rd @Rs16→Rd16 2 -- -- ∆ ∆ 0 -- 4

MOV.W
@(d:16,Rs),Rd

W @(d:16,Rs16)→Rd1
6

4 -- -- ∆ ∆ 0 -- 6

MOV.W@Rs+,Rd W @Rs16→Rd16
Rs16+2→Rs16

2 -- -- ∆ ∆ 0 -- 6

MOV.W@aa:16,Rd W @aa:16→Rd16 4 -- -- ∆ ∆ 0 -- 6

MOV.W Rs,@Rd W Rs16→@Rd16 2 -- -- ∆ ∆ 0 -- 4

MOV.W
Rs,@(d:16,Rd)

W Rs16→@(d:16,Rd1
6)

4 -- -- ∆ ∆ 0 -- 6

MOV.W Rs,@-Rd W Rd16-2→Rd16
Rs16→@Rd16

2 -- -- ∆ ∆ 0 -- 6

MOV.W Rs, @aa:16 W Rs16→@aa:16 4 -- -- ∆ ∆ 0 -- 6

POP Rd W @SP→Rd16
SP+2→SP

2 -- -- ∆ ∆ 0 -- 6

PUSH Rs W SP-2→SP
Rs16→@SP

2 -- -- ∆ ∆ 0 -- 6

131

Table 2-2. List of Instructions (2)

Addressing Mode and
Instruction Length (Bytes)

Mnemonic

O
p

er
an

d
 S

iz
e

Operation #x
x:

 8
/1

6

R
n

@
R

n

@
(d

:1
6,

R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

Im
p

lie
d

Condition Code

N
o

. o
f

S
ta

te
s

I H N Z V0 C

ADD.B #xx:8,Rd B Rd8+#xx:8→Rd8 2 -- ∆ ∆ ∆ ∆ ∆ 2

ADD.B Rs,Rd B Rd8+Rs8→Rd8 2 -- ∆ ∆ ∆ ∆ ∆ 2

ADD.W Rs,Rd W Rd16+Rs16→Rd16 2 -- (1) ∆ ∆ ∆ ∆ 2

ADDX.B #xx:8,Rd B Rd8+#xx:8+C→Rd8 2 -- ∆ ∆ (2) ∆ ∆ 2

ADDX.B Rs,Rd B Rd8+Rs8 +C→Rd8 2 -- ∆ ∆ (2) ∆ ∆ 2

ADDS.W #1,Rd W Rd16+1→Rd16 2 -- -- -- -- -- -- 2

ADDS.W #2,Rd W Rd16+2→Rd16 2 -- -- -- -- -- -- 2

INC.B Rd B Rd8+1→Rd8 2 -- -- ∆ ∆ ∆ -- 2

DAA.B Rd B Rd8 decimal
adjust→Rd8

2 -- * ∆ ∆ * (3) 2

SUB.B Rs,Rd B Rd8-Rs8→Rd8 2 -- ∆ ∆ ∆ ∆ ∆ 2

SUB.W Rs,Rd W Rd16-Rs16→Rd16 2 -- (1) ∆ ∆ ∆ ∆ 2

SUBX.B #xx:8,Rd B Rd8#xx:8 -C→Rd8 2 -- ∆ ∆ (2) ∆ ∆ 2

SUBX.B Rs,Rd B Rd8-Rs8 -C→Rd8 2 -- ∆ ∆ (2) ∆ ∆ 2

SUBS.W #1.Rd W Rd16-1→Rd16 2 -- -- -- -- -- -- 2

SUBS.W #2.Rd W Rd16-2→Rd16 2 -- -- -- -- -- -- 2

DEC.B Rd B Rd8-1→Rd8 2 -- -- ∆ ∆ ∆ -- 2

DAS.B Rd B Rd8 decimal
adjust→Rd8

2 -- * ∆ ∆ * -- 2

NEG.B Rd B 0-Rd→Rd 2 -- ∆ ∆ ∆ ∆ ∆ 2

CMP.B #xx:8,Rd B Rd8-#xx:8 2 -- ∆ ∆ ∆ ∆ ∆ 2

CMP.B Rs,Rd B Rd8-Rs8 2 -- ∆ ∆ ∆ ∆ ∆ 2

CMP.W Rs,Rd W Rd16-Rs16 2 -- (1) ∆ ∆ ∆ ∆ 2

MULXU.B Rs,Rd B Rd8xRs8→Rd16 2 -- -- -- -- -- -- 14

DIVXU.B Rs,Rd B Rd16÷Rs8→Rd16
(RdH:remainder,Rd
L:quotient)

2 -- -- (5) (6) -- -- 14

AND.B #xx:8,Rd B Rd8^xx:8→Rd8 2 -- -- ∆ ∆ 0 -- 2

AND.B Rs,Rd B Rd8^Rs8→Rd8 2 -- -- ∆ ∆ 0 -- 2

OR.B #xx:8,Rd B Rd8v#xx:8→Rd8 2 -- -- ∆ ∆ 0 -- 2

OR.B Rs,Rd B Rd8vRs8→Rd8 2 -- -- ∆ ∆ 0 -- 2

XOR.B #xx:8,Rd B Rd8⊕#xx:8→Rd8 2 -- -- ∆ ∆ 0 -- 2

XOR.B Rs,Rd B Rd8⊕Rs8→Rd8 2 -- -- ∆ ∆ 0 -- 2

NOT.B Rd B 5G→Rd 2 -- -- ∆ ∆ 0 -- 2

132

Table 2-2. List of Instructions (3)

Addressing Mode and

Instruction Length (Bytes)

Mnemonic
O

p
er

an
d

 S
iz

e
Operation #x

x:
 8

/1
6

R
n

@
R

n

@
(d

:1
6,

R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

Im
p

lie
d

Condition Code

N
o

. o
f

S
ta

te
s

I H N Z V0 C

SHAL.B Rd B
b7 b0

0C 2 - - ∆ ∆ ∆ ∆ 2

SHAR.B Rd B C

b7 b0

2 - - ∆ ∆ 0 ∆ 2

SHLL.B Rd B
b7 b0

0C 2 - - ∆ ∆ 0 ∆ 2

SHLR.B Rd B
b7 b0

0 C 2 - - 0 ∆ 0 ∆ 2

ROTXL.B Rd B C

b7 b0

2 - - ∆ ∆ 0 ∆ 2

ROTXR.B Rd B C

b7 b0

2 - - ∆ ∆ 0 ∆ 2

ROTL.B Rd B C

b7 b0

2 - - ∆ ∆ 0 ∆ 2

ROTR.B Rd B C

b7 b0

2 - - ∆ ∆ 0 ∆ 2

BSET #xx:3,Rd B (#xx:3 of Rd8)←1 2 - - - - - - 2

BSET #xx:3,@Rd B (#xx:3 of

@Rd16←1)

4 - - - - - - 8

BSET #xx:3,@aa:8 B (#xx:3 of @aa:8)←1 4 - - - - - - 8

BSET Rn,Rd B (Rn8 of Rd8)←1 2 - - - - - - 2

BSET Rn,@Rd B (Rn8 of @Rd16)←1 4 - - - - - - 8

BSET Rn,@aa:8 B (Rn8 of @aa:8)←1 4 - - - - - - 8

133

Table 2-2. List of Instructions (4)

Addressing Mode and
Instruction Length (Bytes)

Mnemonic

O
p

er
an

d
 S

iz
e

Operation #x
x:

 8
/1

6

R
n

@
R

n

@
(d

:1
6,

R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

Im
p

lie
d

Condition Code

N
o

. o
f

S
ta

te
s

I H N Z V0 C

BCLR #xx:3,Rd B (#xx:3 of Rd8)←0 2 - - - - - - 2

BCLR #xx:3,@Rd B (#xx:3 of @Rd16)←0 4 - - - - - - 8

BCLR #xx:3,@aa:8 B (#xx:3 of @aa:8)←0 4 - - - - - - 8

BCLR Rn,Rd @Rd B (Rn8 of @Rd8)←0 2 - - - - - - 2

BCLR Rn,@Rd B (Rn8 of @Rd 16)←0 4 - - - - - - 8

BCLR Rn,@aa:8 B (Rn8 of @aa:8)←0 4 - - - - - - 8

BNOT #xx:3,Rd B (#xx:3 of Rd8)←
��[[���RI�5G���

2 - - - - - - 2

BNOT #xx:3,@Rd B (#xx:3 of @Rd16)←
��[[���RI�#5G���

4 - - - - - - 8

BNOT #xx:3,@aa:8 B (#xx:3 of @aa:8)
��[[���RI�#DD���

4 - - - - - - 8

BNOT Rn,Rd B (Rn8 of Rd8) ←
�5Q��RI�5G��

2 - - - - - - 2

BNOT Rn,@Rd B (Rn8 of @Rd16) ←
�5Q��RI�#5G���

4 - - - - - - 8

BNOT Rn,@aa 8 B (Rd8 of @aa:8) ←
�5Q���RI�#DD���

4 - - - - - - 8

BTST #xx:3,Rd B (�[[���RI�5G�) → Z 2 - - - ∆ - - 2

BTST #xx:3,@Rd B (�[[���RI�#5G��) → Z 4 - - - ∆ - - 6

BTST #xx:3,@aa:8 B (�[[���RI�#DD��) →Z 4 - - - ∆ - - 6

BTST Rn,Rd B (5Q��RI�5G�)→ Z 2 - - - ∆ - - 2

BTST Rn,@Rd B (5Q��RI�#5G��) → Z 4 - - - ∆ - - 6

BTST Rn,@aa:8 B (5Q��RI�#�DD��) → Z 4 - - - ∆ - - 6

BLD #xx:3,Rd B (�[[���RI�5G�) → C 2 - - - - - ∆ 2

BLD #xx:3,@Rd B (�[[���RI�#5G��) → C 4 - - - - - ∆ 6

BLD #xx:3,@aa:8 B (#xx:3 of @aa:8) → C 4 - - - - - ∆ 6

BILD #xx:3,Rd B (�[[���RI�5G�) → C 2 - - - - - ∆ 2

BILD #xx:3,@Rd B (�[[���RI�#5G��) → C 4 - - - - - ∆ 6

BILD #xx:3,@aa8 B (�[[���RI�#DD��) → C 4 - - - - - ∆ 6

BST #xx:3,Rd B C → (#xx:3 of Rd8) 2 - - - - - - 2

BST #xx:3,@Rd B C → (#xx:3 of @Rd16) 4 - - - - - - 8

BST #xx:3,@aa:8 B C → (#xx:3 of @aa:8) 4 - - - - - - 8

134

Table 2-2. List of Instructions (5)

Addressing Mode and

Instruction Length (Bytes)

Mnemonic

O
p

er
an

d
 S

iz
e

Operation #x
x:

 8
/1

6

R
n

@
R

n

@
(d

:1
6,

R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

Im
p

lie
d

Condition Code

N
o

. o
f

S
ta

te
s

I H N Z V0 C

BIST #xx:3,Rd B & → (#xx:3 of Rd8) 2 - - - - - - 2

BIST #xx:3,@Rd B & → (#xx:3 of @Rd16) 4 - - - - - - 8

BIST #xx:3,@aa8 B & → (#xx:3 of @aa:8) 4 - - - - - - 8

BAND #xx:3,Rd B C^ (#xx:3 of Rd8) → C 2 - - - - - ∆ 2

BAND #xx:3,@Rd B C^ (#xx:3 of @Rd16) → C 4 - - - - - ∆ 6

BAND #xx:3,@aa 8 B C^ (#xx:3 of @aa 8) → C 4 - - - - - ∆ 6

BIAND #xx:3,Rd B C ^ (�[[���RI�5G�) → C 2 - - - - - ∆ 2

BIAND #xx:3,@Rd B C^ (�[[���RI�#5G��) →C 4 - - - - - ∆ 6

BIAND #xx:3,@aa8 B C ^ (�[[���RI�#DD��) → C 4 - - - - - ∆ 6

BOR #xx:3,Rd B Cv (#xx:3 of Rd8) → C 2 - - - - - ∆ 2

BOR #xx:3,@Rd B C v (#xx:3 of @Rd16) → C 4 - - - - - ∆ 6

BOR #xx:3,@aa.8 B C v (#xx:3 of @aa:8) → C 4 - - - - - ∆ 6

BIOR #xx:3,Rd B C v (�[[���RI�5G�) →C 2 - - - - - ∆ 2

BIOR #xx:3,@Rd B C v (�[[���RI�#5G��)→ C 4 - - - - - ∆ 6

BIOR #xx:3, @aa:8 B C v (�[[���RI�#DD��)→ C 4 - - - - - ∆ 6

BXOR #xx:3,Rd B C⊕ (#xx:3 of Rd8) → C 2 - - - - - ∆ 2

BXOR #xx:3,@Rd B C⊕ (#xx:3 of @Rd16) → C 4 - - - - - ∆ 6

BXOR #xx:3, @aa:8 B C⊕ (#xx:3 of @aa:8) → C 4 - - - - - ∆ 6

BIXOR #xx:3,Rd B C⊕ (�[[���RI�5G�) → C 2 - - - - - ∆ 2

BIXOR #xx:3,@Rd B C⊕ (�[[���RI�#5G��) → C 4 - - - - - ∆ 6

BIXOR #xx:3,@aa:8 B C⊕ (�[[���RI�#DD��) → C 4 - - - - - ∆ 6

BRA d:8 (BTd:8) -- PC ← PC+d:8 2 - - - - - - 4

BRN d:8 (BFd 8) -- PC ← PC+2 2 - - - - - - 4

135

Table 2-2. List of Instructions (6)

Addressing Mode and
Instruction Length (Bytes)

Mnemonic

O
p

er
an

d
 S

iz
e

Operation

#x
x:

 8
/1

6

R
n

@
R

n

@
(d

:1
6,

R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

Condition Code

N
o

. o
f

S
ta

te
s

Branching
Condition

I H N Z V0 C

BPL d:8 -- if condition
is true
then
PC←PC+d
:8 else
next;

N=0 2 - - - - - - 4

BMI d:8 -- N=1 2 - - - - - - 4

BGE d:8 -- N⊕V=0 2 - - - - - - 4

BLT d:8 -- N⊕V=1 2 - - - - - - 4

BGT d:8 -- Zv(N⊕V)=0 2 - - - - - - 4

BLE d:8 -- Zv(N⊕V)=1 2 - - - - - - 4

JMP @Rn -- PC ← Rn16 2 - - - - - - 4

JMP @aa:16 -- PC ← aa:16 4 - - - - - - 6

JMP @@aa:8 -- PC ← @aa:8 2 - - - - - - 8

BSR -- SP-2 → SP
PC → @SP
PC ← PC+d:8

2 - - - - - - 6

JSR @Rn -- SP-2 → SP
PC → @SP
PC ← Rn16

2 - - - - - - 6

JSR @aa:16 -- SP-2 → SP PC→@SP
PC ← aa:16

4 - - - - - - 8

JSR @@aa:8 -- SP-2 → SP PC→@SP
PC ← @aa:8

2 - - - - - - 8

RTS -- PC ← SP
SP+2 → SP

2 - - - - - - 8

RTE CCR←@SP SP+2→SP
PC ← @SP SP+2 →
SP

2 ∆ ∆ ∆ ∆ ∆ ∆ 10

SLEEP -- Transit to sleep mode. 2 - - - - - - 2

LDC #xx:8,CCR B #xx:8 → CCR 2 ∆ ∆ ∆ ∆ ∆ ∆ 2

LDC Rs,CCR B Rs8 → CCR 2 ∆ ∆ ∆ ∆ ∆ ∆ 2

STC CCR,Rd B CCR → Rd8 2 - - - - - - 2

ANDC #xx:8,CCR B CCR^#xx:8 → CCR 2 ∆ ∆ ∆ ∆ ∆ ∆ 2

ORC #xx:8,CCR B CCR^#xx:8 →CCR 2 ∆ ∆ ∆ ∆ ∆ ∆ 2

136

Addressing Mode and

Instruction Length (Bytes)

Mnemonic

O
p

er
an

d
 S

iz
e

Operation

#x
x:

 8
/1

6

R
n

@
R

n

@
(d

:1
6,

R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

Im
p

lie
d

Condition Code

N
o

.
o

f
S

ta
te

s

Branching

Condition

I H N Z V0 C

BHI d:8 -- if

condition

is true

then PC

← PC+d:8

else next;

CvZ=0 2 - - - - - - 4

BLS d:8 -- CvZ=1 2 - - - - - - 4

BCC d:8 (BHS d:8) -- C=0 2 - - - - - - 4

BCS d:8 (BLO d:8) -- C=1 2 - - - - - - 4

BNE d:8 -- Z=0 2 - - - - - - 4

BEQ d:8 -- Z=1 2 - - - - - - 4

BVC d:8 -- V=0 2 - - - - - - 4

BVS d:8 -- V=1 2 - - - - - - 4

137

Table 2-2. List of Instructions (7)

Addressing Mode and

Instruction Length (Bytes)

Mnemonic

O
p

er
an

d
 S

iz
e

Operation #x
x:

 8
/1

6

R
n

@
R

n

@
(d

:1
6,

R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

Im
p

lie
d

Condition Code

N
o

. o
f

S
ta

te
s

I H N Z V0 C

XORC #xx:8,CCR B CCR⊕#xx:8 → CCR 2 ∆ ∆ ∆ ∆ ∆ ∆ 2

NOP -- PC ← PC+2 2 - - - - - - 2

EEPMOV -- if R4L≠0 Repeat

@R5 → @ R6 R5+1

→ R5 R6+1 → R6

R4L-1 → R4L Until

R4L=0 else next;

4 - - - - - - (4)

Notes: The number of execution states indicated here assumed that the operation code and
operand data are in on-chip memory. For other cases, refer to section 2.5, Number of
Execution States.

(1) Set to 1 when there is a carry or borrow at bit 11; otherwise cleared to 0.
(2) When the result is 0, the previous value remains unchanged; otherwise cleared to 0.
(3) Set to 1 when there is a carry in the adjusted result; otherwise the previous value

remains unchanged.
(4) The number of execution states is 4n + 9, with n being the value set in R4L.
(5) Set to 1 when the divisor is negative; otherwise cleared to 0.
(6) Set to 1 when the divisor is 0; otherwise cleared to 0.

138

2.5 Number of Execution States

The tables here can be used to calculate the number of states required for instruction execution.
Table 2-3 indicated the number of states required for each cycle (instruction fetch, branch
address read, stack operation, byte data access, word data access, internal operation). Table 2-4
indicates the number of cycles of each type occurring in each instruction.. The total number of
states required for execution of an instruction can be calculated from these two tables as follows:

Execution states=I×SI+J×SJ+K×SK+L×SL+M×SM+N×SN

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is
accessed.

1. BSET #0, @'FF00
From table 2-4:
I=L=2, J=K=M=N=0
From table 2- 3:
SI = 2, SL = 2

Number of states required for execution = 2 × 2 + 2 × 2 = 8

When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM,
and on-chip RAM is used for stack area.

2. JSR @@ 30

From table 2-4:

I=2, J=K= 1, L=M=N=0

From table 2-3:

SI=SJ=SK=2

Number of states required for execution = 2 × 2 + 1 × 2 + 1 × 2 = 8

Table 2-3. Number of States Taken by Each Cycle in Instruction Execution

Access Location

Execution Status
(instruction cycle) On-Chip Memory On-Chip Peripheral Moduel

Instruction fetch SI

Branch address read SJ

Stack operation SK 2
Byte data access SL 2 or 3*
Word data access SM

Internal operation SN 1
* Depends on which on-chip module is accessed. See the applicable hardware manual for

details.

139

Table 2-4. Number of Cycles in Each Instruction

Instruction Mnemonic

Instruction
Fetch
I

Branch
Addr. Read
J

Stack
Operation
K

Byte Data
Access
L

Word Data
Access
M

Internal
Operation
N

ADD ADD.B #xx:8, Rd 1

ADD.B Rs, Rd 1

ADD.W Rs, Rd 1

ADDS ADDS.W #1/2, Rd 1

ADDX ADDX.B #xx:8, Rd 1

ADDX.B Rs, Rd 1

AND AND.B #xx:8, Rd 1

AND.B Rs, Rd 1

ANDC ANDC #xx:8, CCR 1

BAND BAND #xx:3, Rd 1

BAND #xx:3, @Rd 2 1

BAND #xx:3, @aa:8 2 1

Bcc BRA d:8 (BT d:8) 2

BRN d:8 (BF d:8) 2

BHI d:8 2

BLS d:8 2

BCC d:8 (BHS d:8) 2

BCS d:8 (BLO d:8) 2

BNE d:8 2

BEQ d:8 2

BVC d:8 2

BVS d:8 2

BPL d:8 2

BMI d:8 2

BGE d:8 2

BLT d:8 2

BGT d:8 2

BLE d:8 2

BCLR BCLR #xx:3, Rd 1

BCLR #xx:3, @Rd 2 2

BCLR #xx:3, @aa:8 2 2

140

Instruction Mnemonic

Instruction
Fetch
I

Branch
Addr. Read
J

Stack
Operation
K

Byte Data
Access
L

Word Data
Access
M

Internal
Operation
N

BCLR Rn, Rd 1

BCLR BCLR Rn, @Rd 2 2

BCLR Rn, @aa:8 2 2

BIAND BIAND #xx:3, Rd 1

BIAND #xx:3, @Rd 2 1

BIAND #xx:3, @aa:8 2 1

BILD BILD #xx3, Rd 1

BILD #xx:3, @Rd 2 1

BILD #xx3, @aa:8 2 1

BIOR BIOR #xx:3, Rd 1

BIOR #xx3, @Rd 2 1

BIOR #xx:3, @aa:8 2 1

BIST BIST #xx:3, Rd 1

BIST #xx:3, @Rd 2 2

BIST #xx:3, @aa:8 2 2

BIXOR BIXOR #xx:3, Rd 1

BIXOR #xx:3, @Rd 2 1

BIXOR #xx:3, @aa:8 2 1

BLD BLD #xx:3, Rd 1

BLD #xx:3, @Rd 2 2

BLD #xx:3, @aa:8 2 2

BNOT BNOT #xx:3, Rd 1

BNOT #XX:3, @Rd 2 2

BNOT #xx:3, @aa:8 2 2

BNOT Rn, Rd 1

BNOT Rn, @Rd 2 2

BNOT Rn, @aa:8 2 2

BOR BOR #xx:3, Rd 1

BOR #xx:3, @Rd 2 1

BOR #xx:3, @aa:8 2 1

BSET BSET #xx:3, Rd 1

BSET #XX:3, @Rd 2 2

BSET #xx:3, @aa:8 2 2

141

Instruction Mnemonic

Instruction
Fetch
I

Branch
Addr. Read
J

Stack
Operation
K

Byte Data
Access
L

Word Data
Access
M

Internal
Operation
N

BSET Rn, Rd 1

BSET Rn, @Rd 2 2

BSET BSET Rn, @aa:8 2 2

BSR BSR d:8 2 1

BST BST #xx:3, Rd 1

BST #xx:3, @Rd 2 2

BST #xx:3, @aa:8 2 2

BTST BTST #xx:3, Rd 1

BTST #xx:3, @Rd 2 1

BTST #xx:3, @aa:8 2 1

BTST Rn, Rd 1

BTST Rn, @Rd 2 1

BTST Rn, @aa:8 2 1

BXOR BXOR #xx:3, Rd 1

BXOR #xx:3, @Rd 2 1

BXOR #xx:3, @aa:8 2 1

CMP CMP. B #xx:8, Rd 1

CMP. B Rs, Rd 1

CMP.W Rs, Rd 1

DAA DAA.B Rd 1

DAS DAS.B Rd 1

DEC DEC.B Rd 1

DIVXU DIVXU.B Rs Rd 1 12

EEPMOV EEPMOV 2 2n+2* 1

INC INC.B Rd 1

JMP JMP @Rn 2

JMP @aa:16 2 2

JMP @@aa:8 2 1 2

JSR JSR @Rn 2 1

JSR @aa:16 2 1 2

JSR @@aa:8 2 1 1

LDC LDC #xx:8, CCR 1

LDC Rs, CCR 1

142

Instruction Mnemonic

Instruction
Fetch
I

Branch
Addr. Read
J

Stack
Operation
K

Byte Data
Access
L

Word Data
Access
M

Internal
Operation
N

MOV MOV.B #xx:8, Rd 1

MOV.B Rs, Rd 1

MOV.B @Rs, Rd 1 1

MOV MOV.B @(d:16, Rs), Rd 2 1

MOV.B @Rs+, Rd 1 1 2

MOV.B @aa:8, Rd 1 1

MOV.B @aa:16, Rd 2 1

MOV.B Rs, @Rd 1 1

MOV.B Rs, @(d:16, Rd) 2 1

MOV.B Rs, @-Rd 1 1 2

MOV.B Rs, @aa:8 1 1

MOV.B Rs, @aa:16 2 1

MOV.W #xx: 16, Rd 2

MOV.W Rs, Rd 1

MOV.W @Rs, Rd 1 1

MOV.W @(d:16, Rs), Rd 2 1

MOV.W @Rs+, Rd 1 1 2

MOV.W @aa:16, Rd 2 1

MOV.W Rs, @Rd 1 1

MOV.W Rs, @(d:16,Rd) 2

MOV.W Rs, @-Rd 1 1 2

MOV.W Rs, @aa:16 2 1

MULXU MULXU.B Rs, Rd 1 12

NEG NEG.B Rd 1

NOP NOP 1

NOT NOT.B Rd 1

OR OR.B #xx:8, Rd 1

OR.B Rs, Rd 1

ORC ORC #xx:8, CCR 1

POP POP Rd 1 1 2

PUSH PUSH Rs 1 1 2

ROTL ROTL.B Rd 1

ROTR ROTR.B Rd 1

143

Instruction Mnemonic

Instruction
Fetch
I

Branch
Addr. Read
J

Stack
Operation
K

Byte Data
Access
L

Word Data
Access
M

Internal
Operation
N

ROTXL ROTXL.B Rd 1

ROTXR ROTXR.B Rd 1

RTE RTE 2 2 2

RTS RTS 2 1 2

SHLL SHLL.B Rd 1

SHAL SHAL.B Rd 1

SHAR SHAR.B Rd 1

SHLR SHLR.B Rd 1

SLEEP SLEEP 1

STC STC CCR, Rd 1

SUB SUB.B Rs, Rd 1

SUB.W Rs, Rd 1

SUBS SUBS.W #1/2, Rd 1

SUBX SUBX.B #xx:8, Rd 1

SUBX.B Rs, Rd 1

XOR XOR.B #xx:8, Rd 1

XOR.B Rs, Rd 1

XORC XORC #xx:8, CCR 1

*n: Initial value in R4L. The source and destination operands are accessed n + 1 times each.

144

145

Section 3. CPU Operation States

There are three CPU operation states, namely, program execution state, power-down state, and
exception-handling state. In power-down state there are sleep mode, standby mode, and watch
mode. These operation states are shown in figure 3-1. Figure 3-2 shows the state transitions. For
further details please refer to the applicable hardware manual.

State Program execution state Active mode

The CPU executes successive program instructions,
 synchronized by the system clock.

Subactive mode

The CPU executes
successive program
instructions in low-
speed operations,
synchronized by the
subclock.

Power-down state

Low-power modes

A state in which some or all
of the chip functions are
stopped to conserve power.

Sleep mode

Standby mode

Watch mode

Exception-handling state

A transient state in which the CPU changes
the processing flow due to a reset or an interrupt.

Figure 3-1. CPU Operation States

Reset state

Power-down state

Exception-
handling state

Program
execution state

Reset cleared

SLEEP instruction executed

Reset occurs

Interrupt
raised

Interrupt
raised

Interrupt handling
completeReset

occurs

Note: On the transitions between modes, see the applicable hardware manual.

Figure 3-2. State Transitions

146

3.1 Program Execution State

In program execution state the CPU executes program instructions in sequence.

3.2 Exception Handling States

Exception-handling states are transient states occurring when exception handling is raised by a
reset or interrupt, and the CPU changes its normal processing flow, branching to a start address
acquired from a vector table. In exception handling caused by an interrupt, PC and CCR values
are saved to the stack, with reference made to a stack pointer (R7).

3.2.1 Types and Priorities of Exception Handling

Exception handling includes processing of reset exceptions and of interrupts. Table 3-1
summarizes the factors causing each kind of exception, and their priorities. Reset exception
handling has the highest priority.

147

Table 3-1. Types of Exception Handling and Priorities

Priority Exception source Detection timing
Timing for start of exception
handling

High Reset Clock-synchronous Reset exception handling starts as
soon as 5(6�pin changes from low to
high.

Low Interrupt End of instruction
execution*

When an interrupt request is made,
interrupt exception handling starts after
execution of the present instruction is
completed.

* Interrupt detection is not made upon completion of ANDC, ORC, XORC, and LDC
instruction execution, nor upon completion of reset exception handling.

148

3.2.2 Exception Sources and Vector Table

The factors causing exception handling can be classified as in figure 3-3.

For details of exception handling, the vector numbers of each source, and the vector addresses,
see the applicable hardware manual.

Exception source

Reset

Interrupt

External interrupt

Internal interrupt
(interrupt raised by on-chip peripheral module)

Figure 3-3. Classification of Exception Sources

3.2.3 Outline of Exception Handling Operation

A reset has the highest priority of all exception handling. After the 5(6 pin goes to low level
putting the CPU in reset state, the 5(6 pin is then put at high level, and reset exception handling
is started at the point when the reset conditions are met. For details on reset conditions refer to
the applicable hardware manual. When reset exception handling is started, the CPU gets a start
address from the exception handling vector table, and starts executing the exception handling
routine from that address. During execution of this routine and immediately after, all interrupts
including NMI are masked.

When interrupt exception handling is started, the CPU refers to the stack pointer (R7) and pushes
the PC and CCR contents to the stack. The CCR I bit is then set to 1, a start address is acquired
from the exception handling vector table, and the interrupt exception handling routine is
executed from this address. The stack state in this case is as shown in figure 3-4.

149

Contents
saved to stack

SP (R7)

SP – 1

SP – 2

SP – 3

SP – 4

Stack
SP + 4

SP + 3

SP + 2

SP + 1

SP (R7)

Even-numbered
address

Prior to start of interrupt
exception handling

After completion of interrupt
exception handling

Notation
PCH:
PCL:
CCR:
SP:

Upper 8 bits of program counter (PC)
Lower 8 bits of program counter (PC)
Condition code register
Stack pointer

* Ignored on return from interrupt.Notes:

CCR

CCR*

PCH

PCL

1.

2.

PC shows the address of the first instruction to be executed upon
return from the interrupt.
Saving and restoring of register contents must always be done
in word size, and must start from an even-numbered address.

Figure 3-4. Stack State after Completion of Interrupt Exception Handling

3.3 Reset State

When the 5(6 pin goes to low level, all processing stops and the system goes to reset state. The
I bit of the condition code register (CCR) is set, masking all interrupts.

After the 5(6 pin is changed externally from low to high level, reset exception handling starts at
the point when the reset conditions are met. For details on reset conditions refer to the applicable
hardware manual.

3.4 Power-Down State

In power-down state the CPU operation is stopped, reducing power consumption. For details see
the applicable hardware manual.

150

151

Section 4. Basic Operation Timing

CPU operation is synchronized by a clock (φ). The period from the rising edge of φ to the next
rising edge is called one state. A memory cycle or bus cycle consists of two or three states. For
details on access to on-chip memory and to on-chip peripheral modules see the applicable
hardware manual.

4.1 On-chip Memory (RAM, ROM)

Two-state access is employed for high-speed access to on-chip memory. The data bus width is
16 bits, allowing access in byte or word size. Figure 4-1 shows the on-chip memory access
cycle.

φ

Internal address bus

Internal read signal

Internal data bus*
(read access)

Internal write signal

Internal data bus*
(write access)

Note:

Bus cycle

T1 state T2 state

Address

Read data

Write data

A 16-bit data bus is used making possible access to word-size
data in 2 states.

Figure 4-1. On-Chip Memory Access Cycle

152

4.2 On-chip Peripheral Modules and External Devices

On-chip peripheral modules are accessed in two or three states. The data bus width is 8 bits, so
access is made in byte size only. Access to word data or instruction codes is not possible. Figure
4-2 shows the on-chip peripheral module access cycle.

φ

Internal address bus

Internal read signal

Internal data bus*
(read access)

Internal write signal

Internal data bus*
(write access)

Note: An 8-bit data bus is used.

Bus cycle

T1 state T2 state

Address

Read data

Write data

(a) Two-state access

φ

Internal address bus

Internal read signal

Internal data bus*
(read access)

Internal write signal

Internal data bus*
(write access)

Bus cycle

T1 state T2 state

Address

Read data

Write data

(b) Three-state access

T3 state

Figure 4-2. On-Chip Peripheral Module Access Cycle

	Contents
	Preface
	Section 1. CPU
	1.1 Overview
	1.2 Registers
	1.3 Instructions

	Section 2. Instruction Set
	2.1 Explanation Format
	2.2 Instructions
	2.3 Operation Code Map
	2.4 List of Instructions
	2.5 Number of Execution States

	Section 3. CPU Operation States
	3.1 Program Execution State
	3.2 Exception Handling States
	3.3 Reset State
	3.4 Power-Down State

	Section 4. Basic Operation Timing
	4.1 On-chip Memory (RAM, ROM)
	4.2 On-chip Peripheral Modules and External Devices

