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Chapter 1

Introduction

This package, SL2Reps, provides methods for constructing and testing matrix presentations of the
representations of SL2(Z) whose kernels are congruence subgroups of SL2(Z).

Irreducible representations of prime-power level are constructed individually by using the Weil
representations of quadratic modules, and from these a list of all representations of a given degree or
level can be produced. Each representation is represented by a pair (S,T ), where S is a symmetric,
unitary matrix and T is a diagonal matrix of finite order; this format is designed for the study of
modular tensor categories in particular.

1.1 Installation

To install SL2Reps, first download it from https://snw-0.github.io/sl2-reps/, then place it
in the pkg subdirectory of your GAP installation (or in the pkg subdirectory of any other GAP root
directory, for example one added with the -l argument).

SL2Reps is then loaded with the GAP command
gap> LoadPackage( "SL2Reps" );

1.2 Usage

Specific irreducible representations may be constructed via the methods in Chapter 3, while lists of
irreducible representations with a given degree or level may be constructed with those in Chapter 4.

This package uses an InfoClass, InfoSL2Reps. It may be set to 0 (silent), 1 (info), or 2 (ver-
bose). To change it, use

gap> SetInfoLevel( InfoSL2Reps, k );
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Chapter 2

Description

The group SL2(Z) is generated by s = [[0,1],[-1,0]] and t = [[1,1],[0,1]] (which satisfy the
relations s4 = (st)3 = id). Thus, any complex representation ρ of SL2(Z) on Cn (where n ∈ Z+ is
called the degree or dimension of ρ) is determined by the n×n matrices S = ρ(s) and T = ρ(t).

This package constructs irreducible representations of SL2(Z) which factor through SL2(Z/`Z)
for some ` ∈ Z+; the smallest such ` is called the level of the representation, and is equal to the
order of T . One may equivalently say that the kernel of the representation is a congruence subgroup.
Such representations are called congruent representations. A congruent representation ρ is called
symmetric if S = ρ(s) is a symmetric, unitary matrix and T = ρ(t) is a diagonal matrix; it was proved
by the authors that every congruent representation is equivalent to a symmetric one (see 2.1.4). Any
representation of SL2(Z) arising from a modular tensor category is symmetric [DLN15].

We therefore present representations in the form of a record rec(S, T, degree, level,
name), where the name follows the conventions of [NW76].

Note that our definition of s follows that of [Nob76]; other authors prefer the inverse, i.e. s =
[[0,-1],[1,0]] (under which convention the relations are s4 = id, (st)3 = s2). When working with
that convention, one must invert the S matrices output by this package.

Throughout, we denote by e the map k 7→ e2πik (an isomorphism from Q/Z to the group of finite
roots of unity in C). For a group G, we denote by Ĝ the character group Hom(G,C×).

2.1 Construction

Any representation ρ of SL2(Z) can be decomposed into a direct sum of irreducible representations
(irreps). Further, if ρ has finite level, each irrep can be factorized into a tensor product of irreps
whose levels are powers of distinct primes (using the Chinese remainder theorem). Therefore, to
characterize all finite-dimensional representations of SL2(Z) of finite level, it suffices to consider
irreps of SL2(Z/pλZ) for primes p and positive integers λ .

2.1.1 Weil representations

Such representations may be constructed using Weil representations as described in [Nob76, Section
1]. We give a brief summary of the process here. First, if M is any additive abelian group, a quadratic
form on M is a map Q : M→Q/Z such that

• Q(−x) = Q(x) for all x ∈M, and
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• B(x,y) = Q(x+ y)−Q(x)−Q(y) defines a Z-bilinear map M×M→Q/Z.

Now let p be a prime number and λ ∈ Z+. Choose a Z/pλZ-module M and a quadratic form Q
on M such that the pair (M,Q) is of one of the three types described in Section 2.2. Each such M
is a ring, and has at most 2 cyclic factors as an additive group. Those with 2 cyclic factors may be
identified with a quotient of the quadratic integers, giving a norm on M. Then the quadratic module
(M,Q) gives rise to a representation of SL2(Z/pλZ) on the vector space V = CM of complex-valued
functions on M. This representation is denoted W (M,Q). Note that the central charge of (M,Q) is
given by SQ(−1) = 1√

|M| ∑x∈M e(Q(x)).

2.1.2 Character subspaces and primitive characters

A family of subrepresentations W (M,Q,χ) of W (M,Q) may be constructed as follows. Denote

Aut(M,Q) = {ε ∈ Aut(M) | Q(εx) = Q(x) for all x ∈M} .

We then associate to (M,Q) an abelian subgroup A≤ Aut(M,Q); the structure of this group depends
on (M,Q) and is described in Section 2.2. Note that A has at most two cyclic factors, whose generators
we denote by α and β . Now, let χ ∈ Â be a 1-dimensional representation (character) of A, and define

Vχ = { f ∈V | f (εx) = χ(ε) f (x) for all x ∈M and ε ∈ A} ,

which is a SL2(Z/pλZ)-invariant subspace of V . We then denote by W (M,Q,χ) the subrepresentation
of W (M,Q) on Vχ . Note that W (M,Q,χ)∼=W (M,Q,χ).

For the abelian groups A ≤ Aut(M,Q), we will frequently refer to a character χ ∈ Â as being
primitive. With the exception of a single family of modules of type R (the extremal case, for which
see Section 2.2.4), primitivity amounts to the following: there exists some ε ∈ A such that χ(ε) 6= 1
and ε fixes the submodule pM ⊂M pointwise. There exists a subgroup A0 ≤A such that a non-trivial
χ ∈ Â is primitive if and only if χ is injective on A0 (or, equivalently, if A0∩ker χ is trivial).

Explicit descriptions of the group A0 for each type are given in Section 2.2 and may be used to
determine the primitive characters.

2.1.3 Irrep Types

All irreps of prime-power level and finite degree may then be constructed in one of three ways ([NW76,
Hauptsatz 2]):

• The overwhelming majority are of the form W (M,Q,χ) for χ primitive and χ2 6= 1; we call
these standard. This includes the primitive characters from the extremal case.

• A finite number, and a single infinite family arising from the extremal case (Section 2.2.4), are
instead constructed by using non-primitive characters or primitive characters χ with χ2 = 1. We
call these non-standard.

• Finally, 18 exceptional irreps are constructed as tensor products of two irreps from the other two
cases. A full list of these may be constructed by SL2IrrepsExceptional (4.3.1).
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2.1.4 S and T matrices

The images W (M,Q)(s)( f ) and W (M,Q)(t)( f ) may be calculated for any f ∈ V (see [Nob76, Satz
2]). Thus, to construct S and T matrices for the irreducible subrepresentations of W (M,Q), it suffices
to find bases for the W (M,Q)-invariant subspaces of V . Choices for such bases are given by [NW76];
however, these often result in non-symmetric S matrices. It has been proven by the authors of this
package that, for all standard and non-standard irreps, there exists a basis for the corresponding sub-
space of V such that S is symmetric and unitary and T is diagonal ([NWW21], in preparation). In
particular, S is always either a real matrix or i times a real matrix. It follows that these properties hold
for the exceptional irreps as well. This package therefore produces matrices with these properties.

All the finite-dimensional irreducible representations of SL2(Z) of finite level can now
be constructed by taking tensor products of these prime-power irreps. Note that, if two
representations are determined by pairs [S1,T1] and [S2,T2], then the pair for their
tensor product may be calculated via the GAP command KroneckerProduct, namely as
[KroneckerProduct(S1,S2),KroneckerProduct(T1,T2)].

2.2 Weil representation types

2.2.1 Type D

Let p be prime. If p = 2 or p = 3, let λ ≥ 2; otherwise, let λ ≥ 1. Then the Weil representation arising
from the quadratic module with

M = Z/pλZ⊕Z/pλZ and Q(x,y) =
xy
pλ

is said to be of type D and denoted D(p,λ ). Information on type D quadratic modules may be obtained
via SL2ModuleD (3.1.1), and subrepresentations of D(p,λ ) with level pλ may be constructed via
SL2IrrepD (3.1.2).

The group
A∼= (Z/pλZ)×

acts on M by a(x,y) = (a−1x,ay) and is thus identified with a subgroup of Aut(M,Q); see [NW76,
Section 2.1]. The group A has order pλ−1(p− 1) and A = 〈α〉× 〈β 〉. The relevant information for
type D quadratic modules is as follows:

p λ α β A0

> 2 1 1 |β |= p−1 〈1〉
> 2 > 1 |α|= pλ−1 (e.g. α = 1+ p) |β |= p−1 〈α〉
2 2 1 −1 〈1〉
2 > 2 |α|= 2λ−2 (e.g. α = 5) −1 〈α〉

When A0 is trivial, every non-trivial character χ ∈ Â is primitive.

2.2.2 Type N

Let p be prime and λ ≥ 1. If p 6= 2, let u be a positive integer so that u≡ 3 mod 4 with −u a quadratic
non-residue mod p; if p= 2, let u= 3. Then the Weil representation arising from the quadratic module
with

M = Z/pλZ⊕Z/pλZ and Q(x,y) =
x2 + xy+ 1+u

4 y2

pλ
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is said to be of type N and denoted N(p,λ ). Information on type N quadratic modules may be obtained
via SL2ModuleN (3.2.1), and subrepresentations of N(p,λ ) with level pλ may be constructed via
SL2IrrepN (3.2.2).

The additive group M is a ring with multiplication given by

(x1,y1) · (x2,y2) = (x1x2−
1+u

4
y1y2,x1y2 + x2y1 + y1y2)

and identity element (1,0). We define a norm Nm(x,y) = x2+xy+ 1+u
4 y2 on M; then the multiplicative

subgroup
A= {ε ∈M× | Nm(ε) = 1}

of M× acts on M by multiplication and is identified with a subgroup of Aut(M,Q); see [NW76, Section
2.2].

The group A has order pλ−1(p+ 1) and A = 〈α〉 × 〈β 〉. The relevant information for type N
quadratic modules is as follows:

p λ α β A0

> 2 1 (1,0) |β |= p+1 〈(1,0)〉
> 2 > 1 |α|= pλ−1 |β |= p+1 〈α〉
2 1 (1,0) |β |= 3 〈(1,0)〉
2 2 (1,0) |β |= 6 〈(−1,0)〉
2 > 2 |α|= pλ−2 |β |= 6 〈α〉

When A0 is trivial, every non-trivial character χ ∈ Â is primitive.

2.2.3 Type R, generic cases

The structure of the quadratic module (M,Q) of type R depends upon three additional parameters: σ ,
r, and t. Details are as follows:

• If p is odd, let λ ≥ 2, σ ∈ {1, . . . ,λ}, and r, t ∈ {1,u} with u a quadratic non-residue mod p.
Then define

M = Z/pλZ⊕Z/pλ−σZ and Q(x,y) =
r(x2 + pσ ty2)

pλ
.

When σ = λ , the second factor of M is trivial, and (M,Q) is said to be in the unary family;
otherwise, it is called generic.

• If p = 2, let λ ≥ 2, σ ∈ {0, . . . ,λ −2} and r, t ∈ {1,3,5,7}. Then define

M = Z/2λ−1Z⊕Z/2λ−σ−1Z and Q(x,y) =
r(x2 +2σ ty2)

2λ
.

When σ = λ −2, the second factor of M is isomorphic to Z/2Z, and (M,Q) is said to be in the
extremal family; otherwise, it is called generic.

In all cases, the resulting representation is said to be of type R and denoted R(p,λ ,σ ,r, t). The
additive group M admits a ring structure with multiplication

(x1,y1) · (x2,y2) = (x1x2− pσ ty1y2,x1y2 + x2y1)
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and identity element (1,0). We define a norm Nm(x,y) = x2 + xy+ pσ ty2 on M.
In this section, we detail generic type R quadratic modules. Information on the unary and extremal

cases is covered in Section 2.2.4.
Let (M,Q) be a generic type R quadratic module. Information on (M,Q) can be obtained via

SL2ModuleR (3.3.1), and subrepresentations of R(p,λ ,σ ,r, t) with level pλ may be constructed via
SL2IrrepR (3.3.2).

The multiplicative subgroup

A= {ε ∈M× | Nm(ε) = 1}

of M× acts on M by multiplication and is identified with a subgroup of Aut(M,Q); see [NW76, Section
2.3 - 2.4]. The relevant information is as follows:

• If p is odd, A= 〈α〉×〈β 〉 with order 2pλ−σ . In this case, for fixed p, λ , σ , each pair (r, t) gives
rise to a distinct quadratic module [Nob76, Satz 4]. The following table covers a complete list
of representatives of equivalence classes of such modules.

p λ σ (r, t) α β A0

3 2 1 r, t ∈ {1,2} |α|= 3 (−1,0) 〈α〉
3 ≥ 3 1 t = 1, r ∈ {1,2} |α|= 3λ−σ−1 |β |= 6 〈α〉
3 ≥ 3 1 t = 2, r ∈ {1,2} |α|= 3λ−σ (−1,0) 〈α〉
3 ≥ 3 2, . . . ,λ −1 r, t ∈ {1,2} |α|= 3λ−σ (−1,0) 〈α〉
≥ 5 ≥ 2 1, . . . ,λ −1 r, t ∈ {1,u} |α|= pλ−σ (−1,0) 〈α〉

• If p= 2, then the generic case occurs when λ ≥ 3 and σ ∈{0, . . . ,λ−3}. Again, A= 〈α〉×〈β 〉;
the order is 2λ−σ−k with k ∈ {0,1,2} (as specified below). In this case, for fixed p, λ , σ , two
pairs (r1, t1) and (r2, t2) may give rise to equivalent quadratic modules [Nob76, Satz 4]. The
following table covers a complete list of representatives of equivalence classes of such modules.

λ σ r t α = (x,y) β A0

3 0 1,3 1,5 (1,0) ( t−1
2 ,1) 〈(−1,0)〉

3 0 1 3,7 (1,0) (−1,0) 〈(−1,0)〉
4 0 1,3 5 x = 2,y≡ 3mod4, |α|= 2λ−2 (−1,0) 〈−α2〉
≥ 4 0 1,3 1 x≡ 1mod4,y = 4, |α|= 2λ−3 (0,1) 〈α〉
≥ 4 0 1 3,7 x≡ 1mod4,y = 4, |α|= 2λ−3 (−1,0) 〈α〉
≥ 5 0 1,3 5 x = 2,y≡ 3mod4, |α|= 2λ−2 (−1,0) 〈α〉
≥ 3 1,2 1,3,5,7 1,3,5,7 x≡ 1mod4,y = 2, |α|= 2λ−σ−2 (−1,0) 〈α〉
≥ 3 ≥ 3 1,3,5,7 1,3,5,7 x≡ 1mod4,y = 1, |α|= 2λ−σ−1 (−1,0) 〈α〉

2.2.4 Type R, unary and extremal cases

This section covers the unary and extremal cases of type R.
First, in the unary family, we have p odd and σ = λ . Then the second factor of M is trivial

(and hence t is irrelevant). We then denote Rpλ (r) = R(p,λ ,λ ,r, t). In this case, we do not decom-
pose W (M,Q) using characters: instead, if λ ≤ 2, then W (M,Q) contains two distinct irreducible
subrepresentations of level pλ , denoted Rpλ (r)±; otherwise, it contains a single such subrepresenta-
tion, denoted Rpλ (r)1. The unary family is handled by SL2IrrepRUnary (3.3.3) (which is called by
SL2IrrepR (3.3.2) when appropriate).
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Second, in the extremal family, we have p = 2, λ ≥ 2, and σ = λ − 2. Then the second factor
of M is isomorphic to Z/2Z, and collapses in 2M. Here, Aut(M,Q) is itself abelian, so we let A =
Aut(M,Q). This group has order 1, 2, or 4, with the following structure:

• For λ = 2 and t = 1, A= 〈τ〉 where τ : (x,y) 7→ (y,x), and A0 = A= 〈τ〉.

• For λ = 2 and t = 3, A is trivial; there are no primitive characters.

• For λ = 3 or 4, A= {±1} acting on M by multiplication; there are no primitive characters.

• Finally, for λ ≥ 5, A = Aut(M,Q) = 〈α〉× 〈−1〉 with α of order 2, and A0 = 〈α〉. Note that,
for this special case, the usual test for primitivity (described in Section 2.1) fails, as there are no
elements of A fixing 2M pointwise.

The extremal family is handled by SL2ModuleR (3.3.1) and SL2IrrepR (3.3.2), just like the generic
case.



Chapter 3

Irreducible representations of
prime-power level

Methods for generating individual irreducible representations of SL2(Z/pλZ) for a given level pλ .
After generating a representation ρ by means of the bases in [NW76], we perform a change of

basis that results in a symmetric representation equivalent to ρ .
In each case (except the unary type R, for which see SL2IrrepRUnary (3.3.3)), the underlying

module M is of rank 2, so its elements have the form (x,y) and are thus represented by lists [x,y].
Characters of the abelian group A= 〈α〉×〈β 〉 have the form χi, j, given by

χi, j(α
v
β

w) 7→ e
(

vi
|α|

)
e
(

w j
|β |

)
,

where i and j are integers. We therefore represent each character by a list [i,j]. Note that in some
cases α or β is trivial, and the corresponding index i or j is therefore irrelevant.

We write p=p, lambda=λ , sigma=σ , and chi=χ .

3.1 Representations of type D

See Section 2.2.1.

3.1.1 SL2ModuleD

. SL2ModuleD(p, lambda) (function)

Returns: a record rec(Agrp, Bp, Char, IsPrim) describing (M,Q).
Constructs information about the underlying quadratic module (M,Q) of type D, for p a prime

and λ ≥ 1.
Agrp is a list describing the elements of A. Each element a ∈ A is represented in Agrp by a list

[v, a, a_inv], where v is a list defined by a = αv[1]β v[2]. Note that β is trivial, and hence v[2] is
irrelevant, when A is cyclic.

Bp is a list of representatives for the A-orbits on M×, which correspond to a basis for the
SL2(Z/pλZ)-invariant subspace associated to any primitive character χ ∈ Â with χ2 6≡ 1. This is the
basis given by [NW76], which may result in a non-symmetric representation; if this occurs, we per-
form a change of basis in SL2IrrepD (3.1.2) to obtain a symmetric representation. For non-primitive
characters, we must use different bases which are particular to each case.

11
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Char(i,j) converts two integers i, j to a function representing the character χi, j ∈ Â.
IsPrim(chi) tests whether the output of Char(i,j) represents a primitive character.

3.1.2 SL2IrrepD

. SL2IrrepD(p, lambda, chi_index) (function)

Returns: a list of lists of the form [S,T ].
Constructs the modular data for the irreducible representation(s) of type D with level pλ , for

p a prime and λ ≥ 1, corresponding to the character χ indexed by chi_index = [i,j] (see the
discussion of Char(i,j) in SL2ModuleD (3.1.1)).

Here S is symmetric and unitary and T is diagonal.
Depending on the parameters, W (M,Q) will contain either 1 or 2 such irreps.

3.2 Representations of type N

See Section 2.2.2.

3.2.1 SL2ModuleN

. SL2ModuleN(p, lambda) (function)

Returns: a record rec(Agrp, Bp, Char, IsPrim, Nm, Prod) describing (M,Q).
Constructs information about the underlying quadratic module (M,Q) of type N, for p a prime

and λ ≥ 1.
Agrp is a list describing the elements of A. Each element a ∈ A is represented in Agrp by a list

[v, a], where v is a list defined by a = αv[1]β v[2]. Note that α is trivial, and hence v[1] is irrelevant,
when A is cyclic.

Bp is a list of representatives for the A-orbits on M×, which correspond to a basis for the
SL2(Z/pλZ)-invariant subspace associated to any primitive character χ ∈ Â with χ2 6≡ 1. This is the
basis given by [NW76], which may result in a non-symmetric representation; if this occurs, we per-
form a change of basis in SL2IrrepD (3.1.2) to obtain a symmetric representation. For non-primitive
characters, we must use different bases which are particular to each case.

Char(i,j) converts two integers i, j to a function representing the character χi, j ∈ Â.
IsPrim(chi) tests whether the output of Char(i,j) represents a primitive character.
Nm(a) and Prod(a,b) are the norm and product functions on M, respectively.

3.2.2 SL2IrrepN

. SL2IrrepN(p, lambda, chi_index) (function)

Returns: a list of lists of the form [S,T ].
Constructs the modular data for the irreducible representation(s) of type N with level pλ , for

p a prime and λ ≥ 1, corresponding to the character χ indexed by chi_index = [i,j] (see the
discussion of Char(i,j) in SL2ModuleN (3.2.1)).

Here S is symmetric and unitary and T is diagonal.
Depending on the parameters, W (M,Q) will contain either 1 or 2 such irreps.
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3.3 Representations of type R

See Section 2.2.3.

3.3.1 SL2ModuleR

. SL2ModuleR(p, lambda, sigma, r, t) (function)

Returns: a record rec(Agrp, Bp, Char, IsPrim, Nm, Ord, Prod, c, tM) describing
(M,Q).

Constructs information about the underlying quadratic module (M,Q) of type R, for p a prime.
The additional parameters λ , σ , r, and t should be integers chosen as follows.

If p is an odd prime, let λ ≥ 2, σ ∈ {1, . . . ,λ −1}, and r, t ∈ {1,u} with u a quadratic non-residue
mod p. Note that σ = λ is a valid choice for type R, however, this gives the unary case, and so is not
handled by this function, as it is decomposed in a different way; for this case, use SL2IrrepRUnary
(3.3.3) instead.

If p = 2, let λ ≥ 2, σ ∈ {0, . . . ,λ −2} and r, t ∈ {1,3,5,7}.
Agrp is a list describing the elements of A. Each element a of A is represented in Agrp by a list

[v, a], where v is a list defined by a = αv[1]β v[2].
Bp is a list of representatives for the A-orbits on M×, which correspond to a basis for the

SL2(Z/pλZ)-invariant subspace associated to any primitive character χ ∈ Â with χ2 6≡ 1. This is the
basis given by [NW76], which may result in a non-symmetric representation; if this occurs, we per-
form a change of basis in SL2IrrepD (3.1.2) to obtain a symmetric representation. For non-primitive
characters, we must use different bases which are particular to each case.

Char(i,j) converts two integers i, j to a function representing the character χi, j ∈ Â.
IsPrim(chi) tests whether the output of Char(i,j) represents a primitive character.
Nm(a), Ord(a), and Prod(a,b) are the norm, order, and product functions on M, respectively.
c is a scalar used in calculating the S-matrix; namely c = 1

|M| ∑x∈M e(Q(x)). Note that this is equal

to SQ(−1)/
√
|M|, where SQ(−1) is the central charge (see Section 2.1.1).

tM is a list describing the elements of the group M− pM.

3.3.2 SL2IrrepR

. SL2IrrepR(p, lambda, sigma, r, t, chi_index) (function)

Returns: a list of lists of the form [S,T ].
Constructs the modular data for the irreducible representation(s) of type R with parameters p, λ ,

σ , r, and t, corresponding to the character χ indexed by chi_index = [i,j] (see the discussions of
σ , r, t, and Char(i,j) in SL2ModuleR (3.3.1)).

Here S is symmetric and unitary and T is diagonal.
Depending on the parameters, W (M,Q) will contain either 1 or 2 such irreps.
If σ = λ for p 6= 2, then the second factor of M is trivial (and hence t is irrelevant), so this falls

through to SL2IrrepRUnary (3.3.3).

3.3.3 SL2IrrepRUnary

. SL2IrrepRUnary(p, lambda, r) (function)

Returns: a list of lists of the form [S,T ].
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Constructs the modular data for the irreducible representation(s) of unary type R (that is, the
special case where σ = λ ) with p an odd prime, λ a positive integer, and r ∈ {1,u} with u a quadratic
non-residue mod p.

Here S is symmetric and unitary and T is diagonal.
In this case, W (M,Q) always contains exactly 2 such irreps.



Chapter 4

Lists of representations

The degree of a representation is also known as the dimension. The level of the congruent representa-
tion determined by the pair (S,T ) is equal to the order of T .

We assign to each representation a name according to the conventions of [NW76].

4.1 Lists by degree

4.1.1 SL2IrrepsOfDegree

. SL2IrrepsOfDegree(degree) (function)

Returns: a list of records of the form rec(S, T, degree, level, name).
Constructs a list of all irreps of SL2(Z) that have the given degree.

4.1.2 SL2IrrepsOfMaxDegree

. SL2IrrepsOfMaxDegree(maximum_degree) (function)

Returns: a list of records of the form rec(S, T, degree, level, name).
Constructs a list of all irreps of SL2(Z) that have at most the given maximum degree.

4.2 Lists by level

4.2.1 SL2IrrepsOfLevel

. SL2IrrepsOfLevel(level) (function)

Returns: a list of records of the form rec(S, T, degree, level, name).
Constructs a list of all irreps of SL2(Z) with the given level.

4.3 Lists of exceptional representations

4.3.1 SL2IrrepsExceptional

. SL2IrrepsExceptional(arg) (function)

Returns: a list of records of the form rec(S, T, degree, level, name).
Constructs a list of the 18 exceptional irreps of SL2(Z).

15



Chapter 5

Methods for testing

By the Chinese Remainder Theorem, it suffices to test irreps of prime power level, so those are the
irreps handled by the functions in this section.

5.1 Testing

5.1.1 SL2WithConjClasses

. SL2WithConjClasses(p, lambda) (function)

Returns: the group SL2(Z/pλZ) with conjugacy classes set to the format we use.

5.1.2 SL2ChiST

. SL2ChiST(S, T, p, lambda) (function)

Returns: a list representing a character of SL2(Z/pλZ).
Converts the modular data (S,T ), which must have level dividing pλ , into a character of

SL2(Z/pλZ), presented in a form matching the conjugacy classes used in SL2WithConjClasses.

5.1.3 SL2TestPositions

. SL2TestPositions(p, lambda) (function)

Returns: a boolean.
Constructs and tests all non-trivial irreps of level dividing pλ by checking their positions in Irr(G)

(see Section 71.8-2 of the GAP Manual). Note that this function will print information on the irreps
involved if InfoSL2Reps is set to level 1 or higher; see Section 1.2.

5.1.4 SL2TestSymmetry

. SL2TestSymmetry(p, lambda) (function)

Returns: a boolean.
Constructs and tests all irreps of level pλ , confirming that the S-matrix is symmetric and unitary

and the T matrix is diagonal. Note that this function will print information on the irreps involved if
InfoSL2Reps is set to level 1 or higher; see Section 1.2.

16
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