TrilinosCouplings Development
Loading...
Searching...
No Matches
scaling Directory Reference
Directory dependency graph for scaling:
scaling

Files

 example_CurlLSFEM.cpp
 Example solution of a div-curl system on a hexahedral mesh using curl-conforming (edge) elements.
 
 example_CVFEM.cpp
 Example solution of an Advection Diffusion equation on a quadrilateral
or triangular mesh using the CVFEM.
 
 example_DivLSFEM.cpp
 Example solution of a div-curl system on a hexahedral mesh using div-conforming (face) elements.
 
 example_GradDiv.cpp
 Example solution grad-div diffusion system with div-conforming (face) elements.
 
 example_Maxwell.cpp
 Example solution of the eddy current Maxwell's equations using curl-conforming (edge) elements.
 
 example_Maxwell_Tpetra.cpp
 Example solution of the eddy current Maxwell's equations using curl-conforming (edge) elements.
 
 example_Poisson.cpp
 Example solution of a Poisson equation on a hexahedral mesh using nodal (Hgrad) elements.
 
 example_Poisson_NoFE_Tpetra.cpp
 Example solution of a Poisson equation on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled but not solved.
 
 example_Poisson_stk.cpp
 Example solution of a Poisson equation on a hexahedral or tetrahedral mesh using nodal (Hgrad) elements.
 
 example_StabilizedADR.cpp
 Example solution of a steady-state advection-diffusion-reaction equation with Dirichlet boundary conditon on a hexahedral mesh using nodal (Hgrad) elements and stabilization.
 
 HybridIntrepidPoisson2D_Pamgen_Tpetra_main.cpp
 Example: Discretize Poisson's equation with Dirichlet boundary conditions on a quadrilateral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved.
 
 HybridIntrepidPoisson3D_Pamgen_Tpetra_main.cpp
 Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved.
 
 IntrepidPoisson_Pamgen_Epetra_main.cpp
 Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Epetra data structures, and optionally solved.
 
 IntrepidPoisson_Pamgen_Tpetra_main.cpp
 Example: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved.
 
 TrilinosCouplings_IntrepidPoissonExample_SolveWithBelos.hpp
 Generic Belos solver for the Intrepid Poisson test problem example.
 
 TrilinosCouplings_IntrepidPoissonExampleHelpers.hpp
 Helper functions for Poisson test problem with Intrepid + Pamgen.