ROL
Public Member Functions | Private Types | Private Member Functions | List of all members
ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual > Class Template Reference

constraint c(x,y) = (x-2)^2 + y^2 - 1. More...

#include <ROL_ParaboloidCircle.hpp>

+ Inheritance diagram for ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >:

Public Member Functions

 Constraint_ParaboloidCircle ()
 
void value (Vector< Real > &c, const Vector< Real > &x, Real &tol)
 Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).
 
void applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
 
void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
 
void applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).
 
- Public Member Functions inherited from ROL::Constraint< Real >
virtual ~Constraint (void)
 
 Constraint (void)
 
virtual void update (const Vector< Real > &x, UpdateType type, int iter=-1)
 Update constraint function.
 
virtual void update (const Vector< Real > &x, bool flag=true, int iter=-1)
 Update constraint functions.
x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
 
virtual std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
 Approximately solves the augmented system
 
virtual void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
 
void activate (void)
 Turn on constraints.
 
void deactivate (void)
 Turn off constraints.
 
bool isActivated (void)
 Check if constraints are on.
 
virtual std::vector< std::vector< Real > > checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application.
 
virtual std::vector< std::vector< Real > > checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application.
 
virtual std::vector< std::vector< Real > > checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian.
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian.
 
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian.
 
virtual void setParameter (const std::vector< Real > &param)
 

Private Types

typedef std::vector< Real > vector
 
typedef Vector< Real > V
 
typedef vector::size_type uint
 

Private Member Functions

template<class VectorType >
ROL::Ptr< const vectorgetVector (const V &x)
 
template<class VectorType >
ROL::Ptr< vectorgetVector (V &x)
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Constraint< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<class Real, class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
class ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >

constraint c(x,y) = (x-2)^2 + y^2 - 1.

Definition at line 167 of file ROL_ParaboloidCircle.hpp.

Member Typedef Documentation

◆ vector

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
typedef std::vector<Real> ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::vector
private

Definition at line 169 of file ROL_ParaboloidCircle.hpp.

◆ V

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
typedef Vector<Real> ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::V
private

Definition at line 170 of file ROL_ParaboloidCircle.hpp.

◆ uint

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
typedef vector::size_type ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::uint
private

Definition at line 172 of file ROL_ParaboloidCircle.hpp.

Constructor & Destructor Documentation

◆ Constraint_ParaboloidCircle()

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::Constraint_ParaboloidCircle ( )
inline

Definition at line 188 of file ROL_ParaboloidCircle.hpp.

Member Function Documentation

◆ getVector() [1/2]

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
template<class VectorType >
ROL::Ptr< const vector > ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::getVector ( const V & x)
inlineprivate

◆ getVector() [2/2]

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
template<class VectorType >
ROL::Ptr< vector > ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::getVector ( V & x)
inlineprivate

◆ value()

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
void ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::value ( Vector< Real > & c,
const Vector< Real > & x,
Real & tol )
inlinevirtual

Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).

Parameters
[out]cis the result of evaluating the constraint operator at x; a constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).


Implements ROL::Constraint< Real >.

Definition at line 190 of file ROL_ParaboloidCircle.hpp.

◆ applyJacobian()

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
void ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::applyJacobian ( Vector< Real > & jv,
const Vector< Real > & v,
const Vector< Real > & x,
Real & tol )
inlinevirtual

Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

Parameters
[out]jvis the result of applying the constraint Jacobian to v at x; a constraint-space vector
[in]vis an optimization-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{jv} = c'(x)v\), where \(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 212 of file ROL_ParaboloidCircle.hpp.

◆ applyAdjointJacobian()

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
void ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::applyAdjointJacobian ( Vector< Real > & ajv,
const Vector< Real > & v,
const Vector< Real > & x,
Real & tol )
inlinevirtual

Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).

Parameters
[out]ajvis the result of applying the adjoint of the constraint Jacobian to v at x; a dual optimization-space vector
[in]vis a dual constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{ajv} = c'(x)^*v\), where \(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 241 of file ROL_ParaboloidCircle.hpp.

◆ applyAdjointHessian()

template<class Real , class XPrim = StdVector<Real>, class XDual = StdVector<Real>, class CPrim = StdVector<Real>, class CDual = StdVector<Real>>
void ROL::ZOO::Constraint_ParaboloidCircle< Real, XPrim, XDual, CPrim, CDual >::applyAdjointHessian ( Vector< Real > & ahuv,
const Vector< Real > & u,
const Vector< Real > & v,
const Vector< Real > & x,
Real & tol )
inlinevirtual

Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).

Parameters
[out]ahuvis the result of applying the derivative of the adjoint of the constraint Jacobian at x to vector u in direction v; a dual optimization-space vector
[in]uis the direction vector; a dual constraint-space vector
[in]vis an optimization-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \( \mathsf{ahuv} = c''(x)(v,\cdot)^*u \), where \(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation based on the adjoint Jacobian.


Reimplemented from ROL::Constraint< Real >.

Definition at line 272 of file ROL_ParaboloidCircle.hpp.

References ROL::Constraint< Real >::applyAdjointHessian().


The documentation for this class was generated from the following file: