GUIS - a GUI widget server

release 1.6 on Thu, 30 Dec 2004 14:14:05 +0100

prcsproj 1.62

Basile STARYNKEVITCH -basile _NOSPAM@starynkevitch.net.invalid
http://www.starynkevitch.net/Basile/index en.html
8, rue de la Faiencerie, 92340 Bourg La Reine, France

January 12, 2007

http://www.starynkevitch.net/Basile/index_en.html

Contents

1

Overview and usage 3
1.1 Motivations and related stuff 3
1.2 Introduction 4
121 callbacks 5
1.2.2 nitialscript 5
1.23 protocols 5
1.2.4 othertoolkits (Qt3)?, 6
1.3 Smallexample 6
131 protocols 6
1.3.2 initial Pythonscript. 7
1.3.3 clientapplication 9
Reference 11
21 installingGuis 11
2.2 invokingGuis 11
Guisfor Python 12
3.1 invocation 12
3.1.1 added Python primitives 12
3.1.2 endof.inputhook 12
3.1.3 endtimeout 12
3.1.4 guissend 12
3.1.5 mainlooplin.script oo 13
3.1.6 nhreplies 13
3.1.7 nhrequests 13
3.1.8 pipecheckperiod 13
3.1.9 taguis 13
3.1.10 xmlcoded 14
Guiswith Ruby 14
4.1 openquestions 14
4.2 Ruby APl . . . 15
experimental and incomplete Slang version of GUIS using sigtk 15
Feedback 16
6.1 Feedbackwelcome 16
6.2 Changelog 16

Software Description |
Name | GUIS
License | GNU General Public Licens
Author | Basile SARYNKEVITCH
Version | 1.6
Development system | Linux/Debian/Sid x86
Programming Language | C
Software Dependencigs
GTK 2.4 (or 2.2)
and related libraries
(Glib, Pango, Atk)| required
Python 2.3 (or 2.2) recommended
PyGTK 2.2 | recommended
Ruby 1.8| recommended
Ryby-Gnome2 0.11.x recommended
Slang 1.4.x| optional
Slgtk 0.5.x | optional

D

Please be nice to send n&a6ile@starynkevitch.net)an email if you
use this information and this Guis software.
Guis is available (as a gnuzipped source tarball) {hdtp://www.starynkevitch.net/Basile/gu
and this document is dmitp://www.Starynkevitch.net/Basile/guisdoc.htmi
See also my home page bitp://www.starynkevitch.net/Basile/
or Guis pagehttp://tfreshmeat.net/projects/guis/ on Freshmeat
for announcement of newer versions. Please feel free tosgygkstions, patches,
criticisms, etc...

1 Overview and usage

This section gives a short overview with the classical addemple. Then the
usage details are given.

1.1 Motivationsand related stuff

Guisis a small widget server. It is a gtk2 (se&p://www.qtK.org/) based
program listening on a pipe for widget requests (requessPathon [or Ruby]
scripts - seehttp://www.python.org/ using the PyGTK 2.0 binding of
GTK2 to Python - senttp://www.daa.com.au/ ~jJames/sottware/pygtk/)
and outputting events or repli€lisis useful for programsin particular, setuid pro-
grams or (ruby,ocaml,perl...) scriptahich do not want to link in a full widget toolkit
but prefer to delegate the user interface to another process

The choice of the scripting language is not critical prodidgedoes have a full
Gtk2 binding. Porting Guis to another scripting languageusth be easy.

http://www.starynkevitch.net/Basile/guis-1.6.tar.gz
http://www.starynkevitch.net/Basile/guisdoc.html
http://www.starynkevitch.net/Basile/
http://freshmeat.net/projects/guis/
http://www.gtk.org/
http://www.python.org/
http://www.daa.com.au/~james/software/pygtk/

(Many years ago, | was a satisfied user of Sun OpenWindowsmysiith its pro-
grammable NeWS [widget] server. | still miss that widgeteei(see a message | posted in
october 1993 ointtp://www.zendo.com/vsta/mail/1/0146.html which is
copied orhttp://starynkevitch.net/Basile/NeWS descr oct 1993 .html)
| don’t understead why the NeWS team, which also probabljgdes! Java, did not con-
sider to embed the JVM inside the X11 server, as a standareéXtehsion, and embedding
a toolkit inside Java, like Swing does, is not an answer.)

A similar project isentity - seehttp://www.entity.cx/ . The major
difference betweempntity andguis is thatguis is a server (listening for orders on a
pipe...) whileentity is a script engine.

The IRAF widget server - sé¢igtp://irat.noao.edu/irat/web/projects/x11irat/
had similar goals. And PicoGttp://picogui.org/ is also server based.

The XUL system of mozilla (seattp://www.Xulplanet.com/) also
describes an interface with XML.

The (previously Berlin, now) Fresco server should be a cedraer for widgets
- which seems nearly dormant. <#p://www.iresco.org/

1.2 Introduction

Guisis a graphical user interface program communication withemtapplication
(using separate protocols). The application send widgédibg requests tdsuis
(so these requests are input f8uis) and handles widget events sent fr@nis.
Usually Guis is started with a small Python initial scriptielin defines common
functions and build some widgets. The requests are Pythorces@ode chunks.
The replies (i.e. events sent back fr@uisto the application) are just some textual
lines sent (by some Python code calliggis _send).

Actually, Guis is strongly dependent on GTK2, and depends less of Python.
The code is designed to makauis easily portablé to any other scripting inter-
preter able to evaluate requests in textual strings, peavitdhis interpreter has a
binding to GTK2. The only reason | use Python here is the alvdity of a nearly
complete binding of Python to GTK2. (I would prefer some otberipting lan-
guages). To remind th&uisis using Python its binary is callguyguis

Since version 1.3Guisis also interfaced to Ruby. See sectidn 4 below.

To port Guis to another language you just have to ligguis.c with a file sim-
ilar to py_guis.c for your scripting language which provides the followingnétions

guis _initialize _interpreter(void) (called once to initialise the interpreter),
guis _load _initial _script(char * scriptname) (called once with either the initial
script name -afile path- or NULLyuis _interpret _request(char * request) (called for
every request), anduis _end _of _input _hook(int timeout) (called at end of input with a
timeout in milliseconds). These last 3 functions shouldine®© if successful, or a static C string
describing the error.

http://www.zendo.com/vsta/mail/1/0146.html
http://starynkevitch.net/Basile/NeWS_descr_oct_1993.html
http://www.entity.cx/
http://iraf.noao.edu/iraf/web/projects/x11iraf/
http://picogui.org/
http://www.xulplanet.com/
http://www.fresco.org/

1.2.1 callbacks

The initial script (or the application) is responsible fasialling appropriate call-
backs with theconnect primitive (or equivalent) of the scripting language (Pytho
or Ruby).

IMPORTANT callbacks in Guis should be robustllbacks cannot raise
uncaught exceptions (because they are run by thgk _main _loop in Guis, out-
side of the (Python or Ruby...) interpreter. Applicatiom®@ld encapsulate call-
backs with the appropriate mechanism (catch ...) in thetscri

1.2.2 initial script

Usually, Guis runs an initial script (in Python or Ruby) which is interprdtby the
scripting language before entering thx _main _loop . This initial script usually
builds the widget and defines some application specific fonst(to implement the
protocol specific to your application).

The initial script is run once. It is specified with the option or with the
-scripter trick. See beloiLZ]2 and the man page.

You might (if possible) end your initial script with a call ggk _main _loop
as provided by the (Python or Ruby) GTK2 binding. Calling itlwnake the
request evaluation better under control and might pernmgeptions in callbacks
(see your documentation of the GTK binding you are using)enTyiou have to
exit explicitly Guis (by calling theexit primitive of Python or Ruby) or telGuis
(usingguis_main_loop_in_script) that you call the main loop.

| still strongly advise against uncaught exceptions inbzadks.

1.2.3 protocols

Every request sent from the application@ais should end with two consecutive
newlin€ characters coded in C &s\n or with a formfeed (coded in C a$,
decimal 12).

Obviously requests cannot contain (inside) a double newlihich is a conven-
tion suitable for most scripting languages (including BythRuby, Ocaml, Lua,
Rep-Lisp, Slang, ...).

A convenient way to debu@uis initial scripts is to runpyguis with an ex-
plicit FIFO input: make it withmkfifo /tmp/fifo and then rumpyguis -s
yourscript -i /tmp/fifo -0 - ; in another xterm, rugat >> /tmp/fifo
and don't forget to end every request with a double newlieedturn) character.

Events or replies sent fro@uis to the application are single lines (maybe very
long) ended with a newline. They should not contain any abrdharacter (eg
newline or formfeed) inside. Requests and replies are &sgnous (a request can
be sent without any replies and vice versa).

2The newline is coded decimal 10 in ASCII or IsoLatinl

The driving idea ofGuis is that the input and output protocols are tailored to
your application. On the input side (requests from your igagibn to Guis) the
protocol is usually made of calls to specific functions defiirethe initial script.
On the output side (replies or events frdauis to your application) the protocol
is defined by sending (thru an appropriate primitive, ugugllis _send, of the
scripting language) arbitrary lines to your applicatioanfr callbacks.

124 other toolkits (Qt3)?

It would be interesting to have a similar approach with QTiBield, and leave some
(bad, incomplete, not even compilable) C++ code undebtw gt _stuff/ di-
rectory of thisGuis. Feel free to reuse this code (under a GNU license). My main
problem was lack of good binding to QT3 and threading proksiémotably threads
are nearly incompatible with an embedded Python).

1.3 Small example

For illustration purpose, suppose we have an applicatioiciwtomputes the sum
of 2 integers, and we want to give it a nice graphical intexfaontaining two
(editable) textual entry widgets, a quit button, and a lakielget displaying the
sum.

M Guis Demo P [

Guis demo
walcarms from pid 21638

l-I'.‘l

Y= |‘E'

T+8 = 16

quik

Figure 1: Simple example demo window

1.3.1 protocols

We have to think first about the messages sent from the apiplicep Guis. We
need first testart the interface (giving some nice title). We will need to desph
sum usingdisplaysum and to display an error message usiligplayerror
And we need to stop the demo, thretapdemo function. All these functions are
Python functions defined in the initial script file.

We also need to define the messages sent @araback to the application. We
will send a plainENDfor end, and a more complex message starting Wiiibto

6

ask the application to make an addition (displaying theltegth a displaysum
request. ThADDmessage should contain the textual content of the two entty w
gets. Since the textual content can be anything (it could evatain control char-
acters like newlines) it should be encoded. We use a C likeding convention,
so will usually sendADD "1" "3" -or evenADD "\t1" "3" if the first entry
starts with a tah The application is in charge of checking that the entriggaio
valid numbers.

The Guis server program buffers all input (python requests) and wiuggvent
replies), reading and writing as soon as possible.

A typical exchange between the application and Guis migtadi®llow; first
the application starts and sends

start("pid 1234")

ThenGuis shows the window and let the user interact with it. Some usger-
action make$suis send back messages like

ADD "2" "5"

To which the application responds with
displaysum(2,5,7)

When the user closes the windo@lis send back
END

To which the application responds with
stopdemo()

and then exits.
When run with the-T flag, Guis opens a window to show the trace of all
requests and replies (this is useful for script and apptioadebugging):

1.3.2 initial Python script

We write a small Python initial script. A special trick {@uis is that if Guis is
invoked with a name (i.eargv[0] in C parlance) ending witkscripter then
the next (second) argument is the initial script name. Heveeean start our script
with

#! lusr/bin/env pyguis-scripter
file guisdemo_script in - *- python - *-

3How to enter a tab character inside a Gtk entry widget is lefirmexercise to the reader.

W LS TrEe e B4

Trace Dabug

ryguis -scrpter guisdems_ncript pid294%0 on hectar lazours
compliled an Sep 3 200781 0:13:25
P00 Sep 030 19ciacrLEm | FOACE WINDOW (=
aputis= 100 Ted Python 222 (# L Sayg 29 2000, 19:39:50)
[GEE 30,2 2eainm i [Debisn preselesiz]]
iae Wtp:/ [atarenk avitch, nelBadile/ guiidec himl or freihmeat nell projectal gu
input requests shown like this & output replies shown Hle bhat

181417 #1 Finibal start

= Lard r"-lq:qllll Fram F|r.|: Ia ﬁ.'":
1040302 *1 ADD "I "E°

189: 14030578 #7 #good sum
displaysurmn (2,5, 7)

1R I4r S 72 72 ADD *3" "A"

1919 9%rde 83 #Fgood sum
displaysum{3,8,11)

19014050, 79F 3 ADD “badinput™ "8"
181450 790 &8 whad Irgeiit
displayerror] iy alid mputi™)]
VRIS, 553 74 400 6" 24"
1914575098 89 #good sum

alisplaysuwm (6, 24,30) e
1015 8T 7T 23 ADD TIDT Va7

19:1%arF.700 F& -i'lj#ﬁd WLIFT

displaysum{12,- 4,8} fod |

Figure 2: Protocol trace window

With such a trick, our initial script can be invoked by gmyguis-scripter
found in our$PATH We make it a symbolic link to thpyguis executable.

We need to tell python to use tlggk module (provided by pygtk) and the
guis module (builtin insidepyguis).

import gtk
import guis

Next, we need to define a callback used by dh# button; it just sends back
the ENDstring to the application

def end_cb(+args):
guis.guis_send("END")

We also define a callback used when text entries are updatedses$ the
guis.to _guis primitive to convert a C string to its textual representatiout
we could have used Pythaoapr function.

8

We need to define thstart function, invoked by the application in its first
request, to build the graphical widgets and connect theraltbarcks. It first builds
a window and its contained vertical box (using GTK2 calls ythen):

def start(welcomsg):
global window, xent, yent, sumlab
window = gtk.Window(gtk.WINDOW_TOPLEVEL)
window.set_title("Guis Demao")
vbox = gtk.VBox(gtk.FALSE,?2)
window.add(vbox)

Then it builds the other widgets (details deleted here,ls@sdurce ofjuisdemo _script
file). At last, it makes thejuit button, connect it to thend cb callback, add it
into vbox and show all of thevindow :

..

quitbut = gtk.Button("quit")
quitbut.connect("clicked", end_cb)
vbox.add(quitbut)
window.show_all()

We need to define thdisplaysum function

def displaysum(x,y,sum):
sumlab.set_markup(('<i>%d</i> + <i>%d</i>’ % (X,y))
+ (= <big>%d</big>" % sum))

We need to define thdisplayerror function. To avoid messing the Gtk2
(pango provided) XML-like markup, we convert the messagést¥ML represen-
tation (i.e. using< for < etc...) using thguis.xml _coded primitive.

def displayerror(message):
sumlab.set_markup('ERROR: "’
+ (guis.xml_coded(message)))

A stopdemo function is also needed (see the source file).

1.3.3 client application

We suppose the client application is written in C. You canecibdéh any language
able to communicate on channels in a textual way. We comneetfarts of the
file guisdemo _client.c . Youdon't need to link anguis specific library to it!

We declare a big line buffer, and the requests and replies filde could also
use theglibc specificgetline function which dynamically allocates the line
buffer.

char linbuf[1024];
FILE =+toguis = stdout;
FILE =fromguis = stdin;

At first, we want to send a request lilstart("guis demo")
Requests may start with a comment used to help identify tineanror messagés

fprintf (toguis, "#initial start\n"
"start(\"pid %d\")\n\n",
(int) getpid ());
fflush (toguis);

Never forget to flush your request channel very often, andhtbexvery request
with two newlines.

Of course we need a loop to read events (or replies) message$tis - each
of them is a single (sometimes very long) line ended with glsinewline.

while (!feof (fromguis)) {
fgets (linbuf, sizeof (linbuf) - 1, fromguis);

if the reply line starts withPADDwe scan it appropriately and ask to display a
fancy line like 2 + 3= 5" otherwise (bad scan because of non-numeric entries) we
display ‘invalid input”

if (Istrncmp (linbuf, "ADD", 3)) {
int x=0, y=0, pos=0;
if (sscanf (linbuf, "ADD \"%d\" \"%d\" %n",
&x, &y, &pos) > 0 && pos > 0) {
fprintf (toguis, "#good sum\n”
"displaysum(%d,%d,%d)\n\n",
X, Y, X ty)
} else {
fprintf (toguis, "#bad input\n”
"displayerror(\"bad input\")\n\n");
}

If the reply isENDwe stop gently (by sending stopdemo() request and
exiting):

} else if (Istrncmp (linbuf, "END", 3)) {
fprintf (toguis, "#stop\n" "stopdemo()\n\n");
fflush (toguis);
sleep (1);
exit (0);

}

4Actually requests are identified by their first line in erroessages.

10

After warning against unexpected input lines, we flush tlyeiest channel and
end the loop.

fflush (toguis);
}; I/ end of while feof

Normally the while loop should never be ended, since our guthon script
should signal termination witBND(handled above).

2 Reference

2.1 installing Guis

You need Python (2.2.x or 2.3.y franitp:// www.python.org/), GTK (2.2
or better fromhttp://www.gtk.org/) and PyGTK (1.99.18 or 2.0 or better
from|http://www.daa.com.au/ ~|James/software/pygtk/) to build pyguis

(the Python version dguis). You need Ruby (1.8.x) fromttp://www.ruby-lang.org/
and ruby-gnome 0.9.1 or later frciniitp://ruby-gnomeZ.sourceforge.|p/

to build ruguis (the Ruby version ofuis). | built a thread-less Python-2.2
which works with Guis. | am using GNU gcc (3.3) and GNU mak&(3. You may
add a local_local.mk file containing definitions for your installation, such as
PREFIX=/usr ,CC=gcc-3.3 ,PYTHONCFLAGS=-l/usr/include/python2.2

or PYTHONLDFLAGS=-Ipython2.2 RUBY=ruby etc... you may even edit the
Makefile.

First configure, either witmake config or with the./Configure script.
Run it with -help to get usage information.

Then runmake thenmake install (which usually requires to be root).

You may build only the Ruby version witmake ruguis or only the Python
version withmake pyguis .

To run the demo, you probably need to addr the Guis source directory to
your$PATHbefore runningguis _demo.sh oryou can run thguisdemo _script
-p guisdemo _client -T command. usguisdemo _rubyscript to run
the Ruby version.

2.2 invoking Guis

See the man page in the source distribution for completeeede of invocation,
or invoke the binay with the-help option.

Guisis usually invoked apyguis command, or indirectly gsyguis-scripter
if started by its initial script.

Guis can be started in a slave fashion (after the applicatms started) by
specifing its input and output channels (thru the and-o options). You may
specify file descriptors or paths as channels.

%I passed the -disable-threads option to Python’s configuripts

11

http://www.python.org/
http://www.gtk.org/
http://www.daa.com.au/~james/software/pygtk/
http://www.ruby-lang.org/
http://ruby-gnome2.sourceforge.jp/

Guis can also be started as a master, by giving the applicattonmand as
argument with-p . You usually need to quote this argument (because of yoli) she
unless the command has no spaces!

The-T option is interesting to show the exchange betwgds and its appli-
cation in a separate window. This is very useful to debug ymitial script or your
application.

The-D option (disabled withDNDEBU&ompile flag) show lots of debugging
information (to debugyguis itself).

The-L option writes all requests into a log file.

the-l or--input-enconding option set the input encoding (as supported
by GLib2 on input channels). Likewise fe©D or --output-enconding

3 Guisfor Python

3.1 invocation

as usual, see sectibnP.2 above.

3.1.1 added Python primitives

In alphabetical order, here are the names wired irgthie builtin Python module.
You need of course to learn and use the modules providegaygtk to actually
build any GTK2 widget! You should not explicitly cafjitk _main _loop from
Python, since itis is already called pyguis

3.1.2 end_of_input_hook

With a callable argument, sets the hook called at end of inplways return the
previous hook (even without any arguments). You probabdp aleed to set the
end timeout usingnd _timeout below.

3.1.3 end_timeout

Get (without arguments) or set (with an integer argumerg)titmeout in millisec-
onds after whiclpyguis exits at end of input. Useful witend _of _input _hook
above.

3.1.4 guissend

Send the string argument on the output channel to the afiplica The string
should not contain control characters (this is not checleb®rwise the appli-
cation might have trouble scanning it. A newline is addeceéded. (You may use
many Python packages to build the sent string; eg you could X&L stuff).

12

3.1.5 main_loop-in_script

Get (without argument) or set (with a truth-value argumené) flag tellingGuis
that the main loogitk _main was called from the initial script.

3.1.6 nb_replies

Get (without arguments) the number of sent replies (eveaslsent to application).
You might set this number with an integer argument (but | seeeason to do this).
3.1.7 nb_requests

Get the number of processed Python requests. You mightisetumber with an
integer argument (but | see no reason to do this).

3.1.8 pipe.check_period

Get (without arguments) or set (with an integer argumerg)gériod in millisec-
onds (should be 0 or 50 to 10000) to check for application ireation (in master
mode). Useful witrend _of _input _hook above.

3.1.9 to_guis

Convert an object (or many of them, considered as a tuple)starag sendable to
the application using the following algorithm:

e if the object is string, represent it in C syntax (except thaible quotes are
escaped ag) so they are only string delimiters in the converted stringp ,
the string made of 4 characters (a, tabulation, doubleequgtis converted
to the 7 character strinta\t\Qz"

e if the object is an integer, represent it in decimal notation
e if the object is a double, represent it like in C withtarefix®, eg#3.14

e if the object is a tuple, convert each component using theesamguis
builtin function and catenate each substring with spacesdparation - if
any component fails to be converted, the entire tuple camefails.

e if the object has &0 _guis attribute, fetch it: if it is a string, return it, if it
is callable, apply it to the object.

e if the object has @0 _guis method, call it (without any arguments except
the recieving object).

e otherwise, fail

®Distinguishing floating numbers from integers with a prefiosld make parsing easier for the
application.

13

3.1.10 xml_coded

Quickly convert a Python string or unicode to its XML repretgion (so the 3
characters string<b is converted to the 6 characters striaglt;b), escaping
characters per XML requirements:

e &as&

e ' as'

n

e " as"

e < as<

e > as>

e other strict ASCII printable characters are kept identical

e all other characters including control and IsoLatinl ateated characters
like @ a are represented by a numerical entity (character numbexdimhl)
like ç for the lowercase ¢ with cedilla

The result ofguis.xml _coded is a string with only ASCII printable charac-
ters (coded 32-126).

4 Guiswith Ruby

Guis has been ported to Ruby 1.8. St&#p://www.ruby-lang.org/ for

more on Ruby. The binary namerisguis (including theruguis-scripter

trick) and has the same invocation asflyguis (Python) version. The Ruby port

is in the fileru _gguis.c
This port uses theuby-gnome2 binding of GTK2. Semttp://ruby-gnomeZ.sourceforge.|p/
The demo works in a Ruby way - it is in tlgaisdemo _rubyscript file

and can berunasiguis -T -D -s guisdemo_rubyscript -p guisdemo_client

(provided that is inside yoursPATH)

4.1 open questions

| don’'t know if a builtin module can have virtual variabless(defined by the
rb _define _virtual _variable C function of the Ruby runtime).

I would like to print more (e.g. the current environmentiebug _extra) but
| don’t know how to code it.

14

http://www.ruby-lang.org/
http://ruby-gnome2.sourceforge.jp/

4.2 Ruby API

There is a builtinGuis Ruby module. It contains thguis _send primitive to
send a string back to the application.

$guis _nbreq ,$guis _nbsend and$guis _pipecheckperiod are (global)
virtual variables (implemented thmp _define _virtual _variable C func-
tion).

$guis _main _loop _in _script is aglobal variable which when setto a true
value avoid callinggtk _main after interpreting the initial script (which should
hence callGtk.main explicitly).

Conversion to XML notation is done by thte _xml method added to the ex-
isting String class.

Conversion to a C-like notation (lik® _guis in Python abov€3.119) is done
by theto _guis method with built-in implementations for arrays, stringgegers,
floats, symbols. The user could add other methods to exislasges by Ruby code
like

ExistingClass.class_eval {
def to_guis
return "result”
end

}

Then end of input hook is settable with

Guis::on_end_of input do |timeout|
user end input hook
done

To remove the end of input hook, just do

#removing end of input hook
Guis::on_end_of_input

5 experimental and incomplete Slang version of GUISus-

ing slgtk
Seehttp://s-lang.org/ for the Slang interpreter. Siegtp://space.mit.edu/cxc/sottware/sla
for the Slgtk binding of Slang to GTK.

The GUIS port to Slang is incomplete and barely tested. Sesdhrce code
for details. Feedback is welcome.

15

http://s-lang.org/
http://space.mit.edu/cxc/software/slang/modules/slgtk

6 Feedback

6.1 Feedback welcome

Please send comments, criticisms, suggestions and pabdiesile _NOSPAM@starynkevitch.net.inval
(but remove theNOSPANNd .invalid from the email) mentioningyuis in

the subject line. Feel free to suggestion new features. nellbout any success

stories (ie Guis use) in your applications!

6.2 Changelog

version 1.6 (december 30, 2004) - minor code clean.

version 1.5 (may 10, 2004) - ported to Gtk2.2, added Slang preliminany @mnd
non-working port to Perl).

version 1.4 (september 5, 2003) bugfix (read buffer us&String) and added
guis_main_loop_in_script), with both Python2.2 and Python2.3
support.

version 1.3 (september 2, 2003) contains the experimental Ruby pod \&arns
against exception in callbacks).

e 1.3.1 added word wrap in trace window,

e 1.3.2 added logfiles with with the Gtk.init requirement in user scripts for
Ruby

e 1.3.3(september 3, 2008hows the versions info in trace window

e 1.3.4(september 4, 2002§emoved the Gtk.init requirement in the user initial
script

version 1.2 (august 31, 2003) minor fixes: just added tpgs.xml _coded
primitive and updated the demo and the documentation.

version 1.1 (august 30, 2003) made a major switch to Python using PyGEK pr
vious versions used Lua).

versions <= 0.3 (march 22, 2003) and older was Lua bageith a Gtk binding to
Lua generated by a CommonLisp script)

16

	Overview and usage
	Motivations and related stuff
	Introduction
	callbacks
	initial script
	protocols
	other toolkits (Qt3)?

	Small example
	protocols
	initial Python script
	client application

	Reference
	installing Guis
	invoking Guis

	Guis for Python
	invocation
	added Python primitives
	end_of_input_hook
	end_timeout
	guis_send
	main_loop_in_script
	nb_replies
	nb_requests
	pipe_check_period
	to_guis
	xml_coded

	Guis with Ruby
	open questions
	Ruby API

	experimental and incomplete Slang version of GUIS using slgtk
	Feedback
	Feedback welcome
	Change log

