
GUIS - a GUI widget server
release 1.6 on Thu, 30 Dec 2004 14:14:05 +0100

prcsproj 1.62

Basile STARYNKEVITCH –basile NOSPAM@starynkevitch.net.invalid
http://www.starynkevitch.net/Basile/index_en.html

8, rue de la Faı̈encerie, 92340 Bourg La Reine, France

January 12, 2007

1

http://www.starynkevitch.net/Basile/index_en.html

Contents

1 Overview and usage 3
1.1 Motivations and related stuff . 3
1.2 Introduction . 4

1.2.1 callbacks . 5
1.2.2 initial script . 5
1.2.3 protocols . 5
1.2.4 other toolkits (Qt3)? . 6

1.3 Small example . 6
1.3.1 protocols . 6
1.3.2 initial Python script . 7
1.3.3 client application . 9

2 Reference 11
2.1 installing Guis . 11
2.2 invoking Guis . 11

3 Guis for Python 12
3.1 invocation . 12

3.1.1 added Python primitives 12
3.1.2 endof input hook . 12
3.1.3 endtimeout . 12
3.1.4 guissend . 12
3.1.5 mainloop in script . 13
3.1.6 nbreplies . 13
3.1.7 nbrequests . 13
3.1.8 pipecheckperiod . 13
3.1.9 toguis . 13
3.1.10 xmlcoded . 14

4 Guis with Ruby 14
4.1 open questions . 14
4.2 Ruby API . 15

5 experimental and incomplete Slang version of GUIS using slgtk 15

6 Feedback 16
6.1 Feedback welcome . 16
6.2 Change log . 16

2

Software Description
Name GUIS

License GNU General Public License
Author Basile STARYNKEVITCH

Version 1.6
Development system Linux/Debian/Sid x86

Programming Language C
Software Dependencies

GTK 2.4 (or 2.2)
and related libraries

(Glib, Pango, Atk) required
Python 2.3 (or 2.2) recommended

PyGTK 2.2 recommended
Ruby 1.8 recommended

Ryby-Gnome2 0.11.x recommended
Slang 1.4.x optional
Slgtk 0.5.x optional

Please be nice to send me (basile@starynkevitch.net)an email if you
use this information and this Guis software.

Guis is available (as a gnuzipped source tarball) fromhttp://www.starynkevitch.net/Basile/gu
and this document is onhttp://www.starynkevitch.net/Basile/guisdoc.html .
See also my home page onhttp://www.starynkevitch.net/Basile/
or Guis pagehttp://freshmeat.net/projects/guis/ on Freshmeat
for announcement of newer versions. Please feel free to sendsuggestions, patches,
criticisms, etc...

1 Overview and usage

This section gives a short overview with the classical adderexample. Then the
usage details are given.

1.1 Motivations and related stuff

Guis is a small widget server. It is a gtk2 (seehttp://www.gtk.org/) based
program listening on a pipe for widget requests (requests are Python [or Ruby]
scripts - seehttp://www.python.org/ using the PyGTK 2.0 binding of
GTK2 to Python - seehttp://www.daa.com.au/ ˜ james/software/pygtk/)
and outputting events or repliesGuis is useful for programs(in particular, setuid pro-
grams or (ruby,ocaml,perl...) scripts)which do not want to link in a full widget toolkit
but prefer to delegate the user interface to another process.

The choice of the scripting language is not critical provided it does have a full
Gtk2 binding. Porting Guis to another scripting language should be easy.

3

http://www.starynkevitch.net/Basile/guis-1.6.tar.gz
http://www.starynkevitch.net/Basile/guisdoc.html
http://www.starynkevitch.net/Basile/
http://freshmeat.net/projects/guis/
http://www.gtk.org/
http://www.python.org/
http://www.daa.com.au/~james/software/pygtk/

(Many years ago, I was a satisfied user of Sun OpenWindows system with its pro-
grammable NeWS [widget] server. I still miss that widget server (see a message I posted in
october 1993 onhttp://www.zendo.com/vsta/mail/1/0146.html which is
copied onhttp://starynkevitch.net/Basile/NeWS_descr_oct_1993 .html)
I don’t understead why the NeWS team, which also probably designed Java, did not con-
sider to embed the JVM inside the X11 server, as a standard X11extension, and embedding
a toolkit inside Java, like Swing does, is not an answer.)

A similar project isentity - seehttp://www.entity.cx/ . The major
difference betweenentity andguis is thatguis is a server (listening for orders on a
pipe...) whileentity is a script engine.

The IRAF widget server - seehttp://iraf.noao.edu/iraf/web/projects/x11iraf/
had similar goals. And PicoGuihttp://picogui.org/ is also server based.

The XUL system of mozilla (seehttp://www.xulplanet.com/) also
describes an interface with XML.

The (previously Berlin, now) Fresco server should be a corbaserver for widgets
- which seems nearly dormant. seehttp://www.fresco.org/

1.2 Introduction

Guis is a graphical user interface program communication with a client application
(using separate protocols). The application send widget building requests toGuis
(so these requests are input forGuis) and handles widget events sent fromGuis.
Usually Guis is started with a small Python initial script which defines common
functions and build some widgets. The requests are Python source code chunks.
The replies (i.e. events sent back fromGuis to the application) are just some textual
lines sent (by some Python code callingguis send).

Actually, Guis is strongly dependent on GTK2, and depends less of Python.
The code is designed to makeGuis easily portable1 to any other scripting inter-
preter able to evaluate requests in textual strings, provided this interpreter has a
binding to GTK2. The only reason I use Python here is the availability of a nearly
complete binding of Python to GTK2. (I would prefer some other scripting lan-
guages). To remind thatGuis is using Python its binary is calledpyguis .

Since version 1.3,Guis is also interfaced to Ruby. See section 4 below.

1To port Guis to another language you just have to linkgguis.c with a file sim-
ilar to py guis.c for your scripting language which provides the following functions
: guis initialize interpreter(void) (called once to initialise the interpreter),
guis load initial script(char * scriptname) (called once with either the initial
script name -a file path- or NULL),guis interpret request(char * request) (called for
every request), andguis end of input hook(int timeout) (called at end of input with a
timeout in milliseconds). These last 3 functions should return 0 if successful, or a static C string
describing the error.

4

http://www.zendo.com/vsta/mail/1/0146.html
http://starynkevitch.net/Basile/NeWS_descr_oct_1993.html
http://www.entity.cx/
http://iraf.noao.edu/iraf/web/projects/x11iraf/
http://picogui.org/
http://www.xulplanet.com/
http://www.fresco.org/

1.2.1 callbacks

The initial script (or the application) is responsible for installing appropriate call-
backs with theconnect primitive (or equivalent) of the scripting language (Python
or Ruby).

IMPORTANTCallbacks in Guis should be robust:callbacks cannot raise
uncaught exceptions (because they are run by thegtk main loop in Guis, out-
side of the (Python or Ruby...) interpreter. Applications should encapsulate call-
backs with the appropriate mechanism (catch ...) in the scripts.

1.2.2 initial script

Usually,Guis runs an initial script (in Python or Ruby) which is interpreted by the
scripting language before entering thegtk main loop . This initial script usually
builds the widget and defines some application specific functions (to implement the
protocol specific to your application).

The initial script is run once. It is specified with the-s option or with the
-scripter trick. See below 2.2 and the man page.

You might (if possible) end your initial script with a call togtk main loop
as provided by the (Python or Ruby) GTK2 binding. Calling it will make the
request evaluation better under control and might permit exceptions in callbacks
(see your documentation of the GTK binding you are using). Then you have to
exit explicitly Guis (by calling theexit primitive of Python or Ruby) or tellGuis
(usingguis_main_loop_in_script) that you call the main loop.

I still strongly advise against uncaught exceptions in callbacks.

1.2.3 protocols

Every request sent from the application toGuis should end with two consecutive
newline2 characters coded in C as\n\n or with a formfeed (coded in C as\f ,
decimal 12).

Obviously requests cannot contain (inside) a double newline which is a conven-
tion suitable for most scripting languages (including Python, Ruby, Ocaml, Lua,
Rep-Lisp, Slang, ...).

A convenient way to debugGuis initial scripts is to runpyguis with an ex-
plicit FIFO input: make it withmkfifo /tmp/fifo and then runpyguis -s
yourscript -i /tmp/fifo -o - ; in another xterm, runcat >> /tmp/fifo
and don’t forget to end every request with a double newline (ie return) character.

Events or replies sent fromGuis to the application are single lines (maybe very
long) ended with a newline. They should not contain any control character (eg
newline or formfeed) inside. Requests and replies are asynchronous (a request can
be sent without any replies and vice versa).

2The newline is coded decimal 10 in ASCII or IsoLatin1

5

The driving idea ofGuis is that the input and output protocols are tailored to
your application. On the input side (requests from your application toGuis) the
protocol is usually made of calls to specific functions defined in the initial script.
On the output side (replies or events fromGuis to your application) the protocol
is defined by sending (thru an appropriate primitive, usually guis send , of the
scripting language) arbitrary lines to your application from callbacks.

1.2.4 other toolkits (Qt3)?

It would be interesting to have a similar approach with QT3. Itried, and leave some
(bad, incomplete, not even compilable) C++ code under thebad qt stuff/ di-
rectory of thisGuis. Feel free to reuse this code (under a GNU license). My main
problem was lack of good binding to QT3 and threading problems (notably threads
are nearly incompatible with an embedded Python).

1.3 Small example

For illustration purpose, suppose we have an application which computes the sum
of 2 integers, and we want to give it a nice graphical interface containing two
(editable) textual entry widgets, a quit button, and a labelwidget displaying the
sum.

Figure 1: Simple example demo window

1.3.1 protocols

We have to think first about the messages sent from the application to Guis. We
need first tostart the interface (giving some nice title). We will need to display a
sum usingdisplaysum and to display an error message usingdisplayerror .
And we need to stop the demo, thru astopdemo function. All these functions are
Python functions defined in the initial script file.

We also need to define the messages sent fromGuis back to the application. We
will send a plainENDfor end, and a more complex message starting withADDto

6

ask the application to make an addition (displaying the result with a displaysum
request. TheADDmessage should contain the textual content of the two entry wid-
gets. Since the textual content can be anything (it could even contain control char-
acters like newlines) it should be encoded. We use a C like encoding convention,
so will usually sendADD "1" "3" -or evenADD "\t1" "3" if the first entry
starts with a tab3. The application is in charge of checking that the entries contain
valid numbers.

TheGuis server program buffers all input (python requests) and output (event
replies), reading and writing as soon as possible.

A typical exchange between the application and Guis might beas follow; first
the application starts and sends

start("pid 1234")

ThenGuis shows the window and let the user interact with it. Some user inter-
action makesGuis send back messages like

ADD "2" "5"

To which the application responds with

displaysum(2,5,7)

When the user closes the window,Guis send back

END

To which the application responds with

stopdemo()

and then exits.
When run with the-T flag, Guis opens a window to show the trace of all

requests and replies (this is useful for script and application debugging):

1.3.2 initial Python script

We write a small Python initial script. A special trick inGuis is that if Guis is
invoked with a name (i.e.argv[0] in C parlance) ending with-scripter then
the next (second) argument is the initial script name. Hencewe can start our script
with

#! /usr/bin/env pyguis-scripter
file guisdemo_script in - * - python - * -

3How to enter a tab character inside a Gtk entry widget is left as an exercise to the reader.

7

Figure 2: Protocol trace window

With such a trick, our initial script can be invoked by anypyguis-scripter
found in our$PATH. We make it a symbolic link to thepyguis executable.

We need to tell python to use thegtk module (provided by pygtk) and the
guis module (builtin insidepyguis).

import gtk
import guis

Next, we need to define a callback used by thequit button; it just sends back
theENDstring to the application

def end_cb(* args):
guis.guis_send("END")

We also define a callback used when text entries are updated. It uses the
guis.to guis primitive to convert a C string to its textual representation but
we could have used Pythonrepr function.

8

We need to define thestart function, invoked by the application in its first
request, to build the graphical widgets and connect them to callbacks. It first builds
a window and its contained vertical box (using GTK2 calls in Python):

def start(welcomsg):
global window, xent, yent, sumlab
window = gtk.Window(gtk.WINDOW_TOPLEVEL)
window.set_title("Guis Demo")
vbox = gtk.VBox(gtk.FALSE,2)
window.add(vbox)

Then it builds the other widgets (details deleted here, see the source ofguisdemo script
file). At last, it makes thequit button, connect it to theend cb callback, add it
into vbox and show all of thewindow :

...
quitbut = gtk.Button("quit")
quitbut.connect("clicked", end_cb)
vbox.add(quitbut)
window.show_all()

We need to define thedisplaysum function

def displaysum(x,y,sum):
sumlab.set_markup((’<i>%d</i> + <i>%d</i>’ % (x,y))

+ (’ = <big>%d</big>’ % sum))

We need to define thedisplayerror function. To avoid messing the Gtk2
(pango provided) XML-like markup, we convert the message toits XML represen-
tation (i.e. using< for < etc...) using theguis.xml coded primitive.

def displayerror(message):
sumlab.set_markup(’ERROR: ’

+ (guis.xml_coded(message)))

A stopdemo function is also needed (see the source file).

1.3.3 client application

We suppose the client application is written in C. You can code it in any language
able to communicate on channels in a textual way. We comment here parts of the
file guisdemo client.c . You don’t need to link anyGuis specific library to it!

We declare a big line buffer, and the requests and replies files. We could also
use theglibc specificgetline function which dynamically allocates the line
buffer.

9

char linbuf[1024];
FILE * toguis = stdout;
FILE * fromguis = stdin;

At first, we want to send a request likestart("guis demo") .
Requests may start with a comment used to help identify them in error messages4.

fprintf (toguis, "#initial start\n"
"start(\"pid %d\")\n\n",
(int) getpid ());

fflush (toguis);

Never forget to flush your request channel very often, and to end every request
with two newlines.

Of course we need a loop to read events (or replies) messages from Guis - each
of them is a single (sometimes very long) line ended with a single newline.

while (!feof (fromguis)) {
fgets (linbuf, sizeof (linbuf) - 1, fromguis);

if the reply line starts withADDwe scan it appropriately and ask to display a
fancy line like “2 + 3 = 5” otherwise (bad scan because of non-numeric entries) we
display “invalid input”

if (!strncmp (linbuf, "ADD", 3)) {
int x=0, y=0, pos=0;
if (sscanf (linbuf, "ADD \"%d\" \"%d\" %n",

&x, &y, &pos) > 0 && pos > 0) {
fprintf (toguis, "#good sum\n"

"displaysum(%d,%d,%d)\n\n",
x, y, x + y);

} else {
fprintf (toguis, "#bad input\n"

"displayerror(\"bad input\")\n\n");
}

If the reply isENDwe stop gently (by sending astopdemo() request and
exiting):

} else if (!strncmp (linbuf, "END", 3)) {
fprintf (toguis, "#stop\n" "stopdemo()\n\n");
fflush (toguis);
sleep (1);
exit (0);

}

4Actually requests are identified by their first line in error messages.

10

After warning against unexpected input lines, we flush the request channel and
end the loop.

fflush (toguis);
}; // end of while feof

Normally the while loop should never be ended, since our guispython script
should signal termination withEND(handled above).

2 Reference

2.1 installing Guis

You need Python (2.2.x or 2.3.y fromhttp://www.python.org/), GTK (2.2
or better fromhttp://www.gtk.org/) and PyGTK (1.99.18 or 2.0 or better
from http://www.daa.com.au/ ˜ james/software/pygtk/) to buildpyguis
(the Python version ofGuis). You need Ruby (1.8.x) fromhttp://www.ruby-lang.org/
and ruby-gnome 0.9.1 or later fromhttp://ruby-gnome2.sourceforge.jp/
to build ruguis (the Ruby version ofGuis). I built a thread-less Python-2.25

which works with Guis. I am using GNU gcc (3.3) and GNU make (3.80). You may
add a local local.mk file containing definitions for your installation, such as
PREFIX=/usr ,CC=gcc-3.3 ,PYTHONCFLAGS=-I/usr/include/python2.2
or PYTHONLDFLAGS=-lpython2.2 RUBY=ruby etc... you may even edit the
Makefile.

First configure, either withmake config or with the./Configure script.
Run it with -help to get usage information.

Then runmake thenmake install (which usually requires to be root).
You may build only the Ruby version withmake ruguis or only the Python

version withmake pyguis .
To run the demo, you probably need to add. or theGuis source directory to

your$PATHbefore runningguis demo.sh or you can run theguisdemo script
-p guisdemo client -T command. useguisdemo rubyscript to run
the Ruby version.

2.2 invoking Guis

See the man page in the source distribution for complete reference of invocation,
or invoke the binay with the--help option.

Guis is usually invoked aspyguis command, or indirectly aspyguis-scripter
if started by its initial script.

Guis can be started in a slave fashion (after the applicationhas started) by
specifing its input and output channels (thru the-i and -o options). You may
specify file descriptors or paths as channels.

5I passed the -disable-threads option to Python’s configure script

11

http://www.python.org/
http://www.gtk.org/
http://www.daa.com.au/~james/software/pygtk/
http://www.ruby-lang.org/
http://ruby-gnome2.sourceforge.jp/

Guis can also be started as a master, by giving the application command as
argument with-p . You usually need to quote this argument (because of your shell)
unless the command has no spaces!

The -T option is interesting to show the exchange betweenguis and its appli-
cation in a separate window. This is very useful to debug yourinitial script or your
application.

The-D option (disabled with-DNDEBUGcompile flag) show lots of debugging
information (to debugpyguis itself).

The-L option writes all requests into a log file.
the-I or --input-enconding option set the input encoding (as supported

by GLib2 on input channels). Likewise for-O or --output-enconding

3 Guis for Python

3.1 invocation

as usual, see section 2.2 above.

3.1.1 added Python primitives

In alphabetical order, here are the names wired in theguis builtin Python module.
You need of course to learn and use the modules provided bypygtk to actually
build any GTK2 widget! You should not explicitly callgtk main loop from
Python, since it is is already called bypyguis

3.1.2 end of input hook

With a callable argument, sets the hook called at end of input. Always return the
previous hook (even without any arguments). You probably also need to set the
end timeout usingend timeout below.

3.1.3 end timeout

Get (without arguments) or set (with an integer argument) the timeout in millisec-
onds after whichpyguis exits at end of input. Useful withend of input hook
above.

3.1.4 guis send

Send the string argument on the output channel to the application. The string
should not contain control characters (this is not checked)otherwise the appli-
cation might have trouble scanning it. A newline is added if needed. (You may use
many Python packages to build the sent string; eg you could send XML stuff).

12

3.1.5 main loop in script

Get (without argument) or set (with a truth-value argument)the flag tellingGuis
that the main loopgtk main was called from the initial script.

3.1.6 nb replies

Get (without arguments) the number of sent replies (event lines sent to application).
You might set this number with an integer argument (but I see no reason to do this).

3.1.7 nb requests

Get the number of processed Python requests. You might set this number with an
integer argument (but I see no reason to do this).

3.1.8 pipe check period

Get (without arguments) or set (with an integer argument) the period in millisec-
onds (should be 0 or 50 to 10000) to check for application termination (in master
mode). Useful withend of input hook above.

3.1.9 to guis

Convert an object (or many of them, considered as a tuple) to astring sendable to
the application using the following algorithm:

• if the object is string, represent it in C syntax (except thatdouble quotes are
escaped as\Q so they are only string delimiters in the converted string) ,so
the string made of 4 characters (a, tabulation, double-quote, z) is converted
to the 7 character string"a\t\Qz"

• if the object is an integer, represent it in decimal notation

• if the object is a double, represent it like in C with a# prefix6, eg#3.14

• if the object is a tuple, convert each component using the same to guis
builtin function and catenate each substring with spaces for separation - if
any component fails to be converted, the entire tuple conversion fails.

• if the object has ato guis attribute, fetch it: if it is a string, return it, if it
is callable, apply it to the object.

• if the object has ato guis method, call it (without any arguments except
the recieving object).

• otherwise, fail
6Distinguishing floating numbers from integers with a prefix should make parsing easier for the

application.

13

3.1.10 xml coded

Quickly convert a Python string or unicode to its XML representation (so the 3
characters stringa<b is converted to the 6 characters stringa<b), escaping
characters per XML requirements:

• & as&

• ’ as'

• " as"

• < as<

• > as>

• other strict ASCII printable characters are kept identical

• all other characters including control and IsoLatin1 accentuated characters
like é à are represented by a numerical entity (character number in decimal)
like ç for the lowercase c with cedillaç

The result ofguis.xml coded is a string with only ASCII printable charac-
ters (coded 32-126).

4 Guis with Ruby

Guis has been ported to Ruby 1.8. Seehttp://www.ruby-lang.org/ for
more on Ruby. The binary name isruguis (including theruguis-scripter
trick) and has the same invocation as thepyguis (Python) version. The Ruby port
is in the fileru gguis.c

This port uses theruby-gnome2 binding of GTK2. Seehttp://ruby-gnome2.sourceforge.jp/ .
The demo works in a Ruby way - it is in theguisdemo rubyscript file

and can be run asruguis -T -D -s guisdemo_rubyscript -p guisdemo_client
(provided that. is inside your$PATH)

4.1 open questions

I don’t know if a builtin module can have virtual variables (as defined by the
rb define virtual variable C function of the Ruby runtime).

I would like to print more (e.g. the current environment indebug extra) but
I don’t know how to code it.

14

http://www.ruby-lang.org/
http://ruby-gnome2.sourceforge.jp/

4.2 Ruby API

There is a builtinGuis Ruby module. It contains theguis send primitive to
send a string back to the application.

$guis nbreq , $guis nbsend and$guis pipecheckperiod are (global)
virtual variables (implemented thrurb define virtual variable C func-
tion).

$guis main loop in script is a global variable which when set to a true
value avoid callinggtk main after interpreting the initial script (which should
hence callGtk.main explicitly).

Conversion to XML notation is done by theto xml method added to the ex-
isting String class.

Conversion to a C-like notation (liketo guis in Python above 3.1.9) is done
by theto guis method with built-in implementations for arrays, strings,integers,
floats, symbols. The user could add other methods to existingclasses by Ruby code
like

ExistingClass.class_eval {
def to_guis

return "result"
end

}

Then end of input hook is settable with

Guis::on_end_of_input do |timeout|
user end input hook

done

To remove the end of input hook, just do

#removing end of input hook
Guis::on_end_of_input

5 experimental and incomplete Slang version of GUIS us-
ing slgtk

Seehttp://s-lang.org/ for the Slang interpreter. Seehttp://space.mit.edu/cxc/software/sla
for the Slgtk binding of Slang to GTK.

The GUIS port to Slang is incomplete and barely tested. See the source code
for details. Feedback is welcome.

15

http://s-lang.org/
http://space.mit.edu/cxc/software/slang/modules/slgtk

6 Feedback

6.1 Feedback welcome

Please send comments, criticisms, suggestions and patchestobasile NOSPAM@starynkevitch.net.inval
(but remove theNOSPAMand .invalid from the email) mentioningguis in
the subject line. Feel free to suggestion new features. Tellme about any success
stories (ie Guis use) in your applications!

6.2 Change log

version 1.6 (december 30, 2004) - minor code clean.

version 1.5 (may 10, 2004) - ported to Gtk2.2, added Slang preliminary port (and
non-working port to Perl).

version 1.4 (september 5, 2003) bugfix (read buffer usesGString) and added
guis_main_loop_in_script), with both Python2.2 and Python2.3
support.

version 1.3 (september 2, 2003) contains the experimental Ruby port (and warns
against exception in callbacks).

• 1.3.1 added word wrap in trace window,

• 1.3.2 added logfiles with-L with the Gtk.init requirement in user scripts for
Ruby

• 1.3.3(september 3, 2002)shows the versions info in trace window

• 1.3.4 (september 4, 2002)removed the Gtk.init requirement in the user initial
script

version 1.2 (august 31, 2003) minor fixes: just added theguis.xml coded
primitive and updated the demo and the documentation.

version 1.1 (august 30, 2003) made a major switch to Python using PyGTK pre-
vious versions used Lua).

versions <= 0.3 (march 22, 2003) and older was Lua based(with a Gtk binding to
Lua generated by a CommonLisp script)

16

	Overview and usage
	Motivations and related stuff
	Introduction
	callbacks
	initial script
	protocols
	other toolkits (Qt3)?

	Small example
	protocols
	initial Python script
	client application

	Reference
	installing Guis
	invoking Guis

	Guis for Python
	invocation
	added Python primitives
	end_of_input_hook
	end_timeout
	guis_send
	main_loop_in_script
	nb_replies
	nb_requests
	pipe_check_period
	to_guis
	xml_coded

	Guis with Ruby
	open questions
	Ruby API

	experimental and incomplete Slang version of GUIS using slgtk
	Feedback
	Feedback welcome
	Change log

